Page 76 - IJB-10-1
P. 76

International Journal of Bioprinting                                     Microfluidic-assisted 3D bioprinting




               particle focusing using direct laser writing. Micromachines.   79.  Xu Z, Wu M, Ye Q, Chen D, Liu K, Bai H. Spinning from
               2020;11(2):113.                                    nature: Engineered preparation and application of high-
               doi: 10.3390/mi11020113                            performance bio-based fibers. Engineering. 2022;14:100-112.
            68.  Oliveira B, Veigas B, Fernandes AR, et al. Fast prototyping      doi: 10.1016/j.eng.2021.06.030
               microfluidics: Integrating droplet digital lamp for   80.  Colosi C, Costantini M, Barbetta A, et al. Microfluidic
               absolute quantification of cancer biomarkers.  Sensors.   bioprinting of heterogeneous 3d tissue constructs. Methods
               2020;20(6):1624.                                   Mol Biol. 2017;1612:369-380.
               doi: 10.3390/s20061624                             doi: 10.1007/978-1-4939-7021-6_26
            69.  Yong J, Zhan Z, Singh SC, Chen F, Guo C. Microfluidic   81.  Wang G, Jia L, Han F, et al. Microfluidics-based fabrication
               channels fabrication based on underwater superpolymphobic   of cell-laden hydrogel microfibers for potential applications
               microgrooves produced by femtosecond laser direct writing.   in tissue engineering. Molecules. 2019;24(8).
               ACS Appl Polym Mater. 2019;1(11):2819-2825.        doi: 10.3390/molecules24081633
               doi: 10.1021/acsapm.9b00269
                                                               82.  Wu F, Ju X jie, He X heng, et al. A novel synthetic microfiber
            70.  Zyla G, Kovalev A, Esen C, Ostendorf A, Gorb S. Two-  with controllable size for cell encapsulation and culture.
               photon polymerization as a potential manufacturing tool   J Mater Chem B. 2016;4:2455-2465.
               for biomimetic engineering of complex structures found in      doi: 10.1039/c6tb00209a
               nature. J Opt Microsyst. 2022;2(03):1-12.
               doi: 10.1117/1.JOM.2.3.031203                   83.  Onoe H, Okitsu T, Itou A, et al. Metre-long cell-laden
                                                                  microfibres exhibit tissue morphologies and functions. Nat
            71.  Lölsberg  J, Linkhorst  J,  Cinar A, Jans A,  Kuehne AJC,
               Wessling  M.  3D  nanofabrication  inside  rapid  prototyped   Mater. 2013;12(6):584-590.
               microfluidic channels showcased by wet-spinning of single      doi: 10.1038/nmat3606
               micrometre fibres. Lab Chip. 2018;18(9):1341-1348.  84.  Hu M, Deng R, Schumacher KM, et al. Hydrodynamic spinning
               doi: 10.1039/c7lc01366c                            of hydrogel fibers. Biomaterials. 2010;31(5):863–869.
            72.  Wang Y, Kankala RK, Zhu K, Wang S-B, Zhang YS, Chen      doi: 10.1016/j.biomaterials.2009.10.002
               A-Zg. Coaxial extrusion of tubular tissue constructs using   85.  Bonhomme O, Leng J, Colin A. Microfluidic wet-spinning
               a gelatin/GelMA blend bioink.  ACS Biomater Sci Eng.   of alginate microfibers: A theoretical analysis of fiber
               2019;5(10):5514-5524.                              formation. Soft Matter. 2012;8(41):10641-10649.
               doi: 10.1021/acsbiomaterials.9b00926               doi: 10.1039/c2sm25552a
            73.  Shao L, Gao Q, Zhao H, et al.  Fiber-based mini tissue   86.  Kurdzinski  ME, Gol  Berrak,  Hee AC, et al.  Dynamics  of
               with  morphology-controllable  GelMA  microfibers.  Small.   high viscosity contrast confluent microfluidic flows. Sci Rep.
               2018;14(44):1-8.                                   2017;7(1):1-11.
               doi: 10.1002/smll.201802187
                                                                  doi: 10.1038/s41598-017-06260-6
            74.  Yu Y, Wei W, Wang Y, Xu C, Guo Y, Qin J. Simple spinning
               of heterogeneous hollow microfibers on chip.  Adv  Mater.   87.  Zaeri A, Zgeib R, Cao K, Zhang F, Chang RC. Numerical
               2016;28:6649-6655.                                 analysis  on the effects  of microfluidic-based  bioprinting
               doi: 10.1002/adma.201601504                        parameters on the microfiber geometrical outcomes.
                                                                  Sci Rep. 2022;12(1):1-16.
            75.  Hu M, Kurisawa M, Deng R, et al. Cell immobilization in      doi: 10.1038/s41598-022-07392-0
               gelatin – hydroxyphenylpropionic acid hydrogel fibers.
               Biomaterials. 2009;30(21):3523-3531.            88.  Zhao M, Liu H, Zhang X, Wang H, Taoab T, Qin J. A flexible
               doi: 10.1016/j.biomaterials.2009.03.004            microfluidic strategy to generate grooved microfibers for
                                                                  guiding cell alignment. Biomater Sci. 2021;9(14):4880-4890.
            76.  Yang Y, Sun J, Liu X, et al. Wet-spinning fabrication of shear-     doi: 10.1039/D1BM00549A
               patterned alginate hydrogel microfibers and the guidance of
               cell alignment. Regen Biomater. 2017;4(5):299-307.  89.  Cai J, Ye D, Wu Y, Fan L, Yu H. Injectable alginate fibrous
               doi: 10.1093/rb/rbx017                             hydrogel with a three-dimensional network structure
            77.  Zhang X, Weng L, Liu Q, Li D, Deng B. Facile fabrication and   fabricated  by microfluidic  spinning.  Compos Commun.
               characterization on alginate microfibres with grooved structure   2019;15(April):1-5.
               via microfluidic spinning. R Soc Open Sci. 2019;6(5):181928.     doi: 10.1016/j.coco.2019.06.004
               doi: 10.1098/rsos.181928                        90.  Ebrahimi M, Ostrovidov S, Bae H, Kim SB, Bae H,
            78.  Rinoldi  C,  Costantini  M,  Kijeńska-Gawrońska  E,  et  al.   Khademhosseini A. Enhanced skeletal muscle formation
               Tendon tissue engineering:Effects of mechanical and   on microfluidic spun gelatin methacryloyl (GelMA) fibres
               biochemical stimulation on stem cell alignment on cell-  using surface patterning and agrin treatment. J Tissue Eng
               laden hydrogel yarns. Adv Healthc Mater. 2019; 8(7):1-10.  Regenrative Med. 2019;12:2151-2163.
               doi: 10.1002/adhm.201801218                        doi: 10.1002/term.2738


            Volume 10 Issue 1 (2024)                        68                          https://doi.org/10.36922/ijb.1404
   71   72   73   74   75   76   77   78   79   80   81