Page 76 - IJB-10-1
P. 76
International Journal of Bioprinting Microfluidic-assisted 3D bioprinting
particle focusing using direct laser writing. Micromachines. 79. Xu Z, Wu M, Ye Q, Chen D, Liu K, Bai H. Spinning from
2020;11(2):113. nature: Engineered preparation and application of high-
doi: 10.3390/mi11020113 performance bio-based fibers. Engineering. 2022;14:100-112.
68. Oliveira B, Veigas B, Fernandes AR, et al. Fast prototyping doi: 10.1016/j.eng.2021.06.030
microfluidics: Integrating droplet digital lamp for 80. Colosi C, Costantini M, Barbetta A, et al. Microfluidic
absolute quantification of cancer biomarkers. Sensors. bioprinting of heterogeneous 3d tissue constructs. Methods
2020;20(6):1624. Mol Biol. 2017;1612:369-380.
doi: 10.3390/s20061624 doi: 10.1007/978-1-4939-7021-6_26
69. Yong J, Zhan Z, Singh SC, Chen F, Guo C. Microfluidic 81. Wang G, Jia L, Han F, et al. Microfluidics-based fabrication
channels fabrication based on underwater superpolymphobic of cell-laden hydrogel microfibers for potential applications
microgrooves produced by femtosecond laser direct writing. in tissue engineering. Molecules. 2019;24(8).
ACS Appl Polym Mater. 2019;1(11):2819-2825. doi: 10.3390/molecules24081633
doi: 10.1021/acsapm.9b00269
82. Wu F, Ju X jie, He X heng, et al. A novel synthetic microfiber
70. Zyla G, Kovalev A, Esen C, Ostendorf A, Gorb S. Two- with controllable size for cell encapsulation and culture.
photon polymerization as a potential manufacturing tool J Mater Chem B. 2016;4:2455-2465.
for biomimetic engineering of complex structures found in doi: 10.1039/c6tb00209a
nature. J Opt Microsyst. 2022;2(03):1-12.
doi: 10.1117/1.JOM.2.3.031203 83. Onoe H, Okitsu T, Itou A, et al. Metre-long cell-laden
microfibres exhibit tissue morphologies and functions. Nat
71. Lölsberg J, Linkhorst J, Cinar A, Jans A, Kuehne AJC,
Wessling M. 3D nanofabrication inside rapid prototyped Mater. 2013;12(6):584-590.
microfluidic channels showcased by wet-spinning of single doi: 10.1038/nmat3606
micrometre fibres. Lab Chip. 2018;18(9):1341-1348. 84. Hu M, Deng R, Schumacher KM, et al. Hydrodynamic spinning
doi: 10.1039/c7lc01366c of hydrogel fibers. Biomaterials. 2010;31(5):863–869.
72. Wang Y, Kankala RK, Zhu K, Wang S-B, Zhang YS, Chen doi: 10.1016/j.biomaterials.2009.10.002
A-Zg. Coaxial extrusion of tubular tissue constructs using 85. Bonhomme O, Leng J, Colin A. Microfluidic wet-spinning
a gelatin/GelMA blend bioink. ACS Biomater Sci Eng. of alginate microfibers: A theoretical analysis of fiber
2019;5(10):5514-5524. formation. Soft Matter. 2012;8(41):10641-10649.
doi: 10.1021/acsbiomaterials.9b00926 doi: 10.1039/c2sm25552a
73. Shao L, Gao Q, Zhao H, et al. Fiber-based mini tissue 86. Kurdzinski ME, Gol Berrak, Hee AC, et al. Dynamics of
with morphology-controllable GelMA microfibers. Small. high viscosity contrast confluent microfluidic flows. Sci Rep.
2018;14(44):1-8. 2017;7(1):1-11.
doi: 10.1002/smll.201802187
doi: 10.1038/s41598-017-06260-6
74. Yu Y, Wei W, Wang Y, Xu C, Guo Y, Qin J. Simple spinning
of heterogeneous hollow microfibers on chip. Adv Mater. 87. Zaeri A, Zgeib R, Cao K, Zhang F, Chang RC. Numerical
2016;28:6649-6655. analysis on the effects of microfluidic-based bioprinting
doi: 10.1002/adma.201601504 parameters on the microfiber geometrical outcomes.
Sci Rep. 2022;12(1):1-16.
75. Hu M, Kurisawa M, Deng R, et al. Cell immobilization in doi: 10.1038/s41598-022-07392-0
gelatin – hydroxyphenylpropionic acid hydrogel fibers.
Biomaterials. 2009;30(21):3523-3531. 88. Zhao M, Liu H, Zhang X, Wang H, Taoab T, Qin J. A flexible
doi: 10.1016/j.biomaterials.2009.03.004 microfluidic strategy to generate grooved microfibers for
guiding cell alignment. Biomater Sci. 2021;9(14):4880-4890.
76. Yang Y, Sun J, Liu X, et al. Wet-spinning fabrication of shear- doi: 10.1039/D1BM00549A
patterned alginate hydrogel microfibers and the guidance of
cell alignment. Regen Biomater. 2017;4(5):299-307. 89. Cai J, Ye D, Wu Y, Fan L, Yu H. Injectable alginate fibrous
doi: 10.1093/rb/rbx017 hydrogel with a three-dimensional network structure
77. Zhang X, Weng L, Liu Q, Li D, Deng B. Facile fabrication and fabricated by microfluidic spinning. Compos Commun.
characterization on alginate microfibres with grooved structure 2019;15(April):1-5.
via microfluidic spinning. R Soc Open Sci. 2019;6(5):181928. doi: 10.1016/j.coco.2019.06.004
doi: 10.1098/rsos.181928 90. Ebrahimi M, Ostrovidov S, Bae H, Kim SB, Bae H,
78. Rinoldi C, Costantini M, Kijeńska-Gawrońska E, et al. Khademhosseini A. Enhanced skeletal muscle formation
Tendon tissue engineering:Effects of mechanical and on microfluidic spun gelatin methacryloyl (GelMA) fibres
biochemical stimulation on stem cell alignment on cell- using surface patterning and agrin treatment. J Tissue Eng
laden hydrogel yarns. Adv Healthc Mater. 2019; 8(7):1-10. Regenrative Med. 2019;12:2151-2163.
doi: 10.1002/adhm.201801218 doi: 10.1002/term.2738
Volume 10 Issue 1 (2024) 68 https://doi.org/10.36922/ijb.1404

