Page 80 - IJB-10-1
P. 80
International Journal of Bioprinting Microfluidic-assisted 3D bioprinting
160. Dikyol C, Altunbek M, Koc B. Embedded multimaterial 172. Gao Q, Liu Z, Lin Z, et al. 3D bioprinting of vessel-like
bioprinting platform for biofabrication of biomimetic structures with multi-level fluidic channels 3D bioprinting
vascular structures. J Mater Res. 2021;36(19):3851-3864. of vessel-like structures with multi-level fluidic channels.
doi: 10.1557/s43578-021-00254-x ACS Biomater Sci Eng. 2017;3(3):399-408.
doi: 10.1021/acsbiomaterials.6b00643
161. Chalard A, Mauduit M, Souleille S, Joseph P, Malaquin L,
Fitremann J. 3D printing of a biocompatible low molecular 173. Wang D, Maharjan S, Kuang X, et al. Microfluidic bioprinting
weight supramolecular hydrogel by dimethylsulfoxide water of tough hydrogel-based vascular conduits for functional
solvent exchange. Addit Manuf. 2020;33(February):101162. blood vessels. Sci Adv. 2022;8(43):1-18.
doi: 10.1016/j.addma.2020.101162 doi: 10.1126/sciadv.abq6900
162. Colosi C, Costantini M, Latini R, et al. Rapid prototyping 174. Silva CA, Cortés-Rodriguez CJ, Hazur J, Reakasame S,
of chitosan-coated alginate scaffolds through the use of a Boccaccini AR. Rationaldesign of a triple-layered coaxial
3D fiber deposition technique. J Mater Chem B. 2014;2(39): extruder system: In silico and in vitro evaluations directed
6779-6791. towards optimizing cell viability. Int JBioprint. 2020;6(4):
doi: 10.1039/c4tb00732h 96-105.
163. Duchi S, Onofrillo C, O’Connell CD, et al. Handheld co-axial doi: 10.18063/ijb.v6i4.282
bioprinting: Application to in situ surgical cartilage repair. 175. Zuo Y, He X, Yang Y, et al. Microfluidic-based generation
Sci Rep. 2017;7(1):5837. of functional microfibers for biomimetic complex tissue
doi: 10.1038/s41598-017-05699-x construction. Acta Biomater. 2016;38:153-162.
164. Hakimi N, Cheng R, Leng L, et al. Handheld skin printer: In doi: 10.1016/j.actbio.2016.04.036
situ formation of planar biomaterials and tissues. Lab Chip. 176. Li S, Liu Y, Li Y, Sun Y, Hu Q. A novel method for fabricating
2018;18(10):1440-1451. engineered structures with branched micro-channel using
doi: 10.1039/c7lc01236e hollow hydrogel fibers. Biomicrofluidics. 2016;10(6):064104.
165. Ying G, Manríquez J, Wu D, et al. An open-source handheld doi: 10.1063/1.4967456
extruder loaded with pore-forming bioink for in situ wound 177. Puertas-Bartolomé M, Włodarczyk-Biegun MK, del Campo
dressing. Mater Today Bio. 2020;8(July):100074. A, Vázquez-Lasa B, Román JS. 3D printing of a reactive
doi: 10.1016/j.mtbio.2020.100074 hydrogel bio-ink using a static mixing tool. Polymers.
166. Pagan E, Stefanek E, Seyfoori A, et al. A handheld bioprinter 2020;12(9):1986.
for multi-material printing of complex constructs. doi: 10.3390/polym12091986
Biofabrication. 2023;15(3):035012. 178. Fernando C, Johana E, Quevedo-moreno DA, et al. High-
doi: 10.1088/1758-5090/acc42c throughput and continuous chaotic bioprinting of spatially
167. Salaris F, Colosi C, Brighi C, et al. 3D bioprinted human controlled bacterial microcosms. ACS Biomater Sci Eng.
cortical neural constructs derived from induced pluripotent 2021;7:2192-2197.
stem cells. J Clin Med. 2019;8(1595):1-13. doi: 10.1021/acsbiomaterials.0c01646
doi: 10.3390%2Fjcm8101595 179. Chávez-Madero C, de León-Derby MD, Samandari M,
168. Yu Y, Shang L, Guo J, Wang J, Zhao Y. Design of capillary et al. Using chaotic advection for facile high-
microfluidics for spinning cell-laden microfibers. throughput fabrication of ordered multilayer micro- and
Nat Protoc. 2018;13(11):2557-2579. nanostructures: Continuous chaotic printing. Biofabrication.
doi: 10.1038/s41596-018-0051-4 2020;12(3):35023.
doi: 10.1088/1758-5090/ab84cc
169. Gao Q, He Y, Fu J, Liu A, Ma L. Coaxial nozzle-assisted
3D bioprinting with built-in microchannels for nutrients 180. Samandari M, Alipanah F, Majidzadeh-A K, Alvarez
delivery. Biomaterials. 2015;61:203-215. MM, Santiago GT-de, Tamayol A. Controlling cellular
doi: 10.1016/j.biomaterials.2015.05.031 organization in bioprinting through designed 3D
microcompartmentalization. Appl Phys Rev. 2021;8(2):1-14.
170. Gao G, Park JY, Kim BS, Jang J, Cho D-W. Coaxial cell printing doi: 10.1063/5.0040732
of freestanding, perfusable, and functional in vitro vascular
models for recapitulation of native vascular endothelium 181. Guimarães CF, Gasperini L, Ribeiro RS, Carvalho AF,
pathophysiology. Adv Healthc Mater. 2018;7(23):1801102. Marquesab AP, Reis RL. High-throughput fabrication
doi: 10.1002/adhm.201801102 of cell-laden 3D biomaterial gradients. Mater Horizons.
2020;7(9):2414-2421.
171. Wu Z, Cai H, Ao Z, Xu J, Heaps S, Guo F. Microfluidic
printing of tunable hollow microfibers for vascular tissue doi: 10.1039/D0MH00818D
engineering. Adv Mater Technol. 2021;6(8):1-9. 182. Lavrentieva A, Fleischhammer T, Enders A, Pirmahboub
doi: 10.1002/admt.202000683 H, Bahnemann J, Pepelanova I. Fabrication of stiffness
Volume 10 Issue 1 (2024) 72 https://doi.org/10.36922/ijb.1404

