Page 80 - IJB-10-1
P. 80

International Journal of Bioprinting                                     Microfluidic-assisted 3D bioprinting




            160. Dikyol C, Altunbek M, Koc B. Embedded multimaterial   172. Gao Q, Liu Z, Lin Z, et al.  3D bioprinting of vessel-like
               bioprinting platform for biofabrication of biomimetic   structures with multi-level fluidic channels 3D bioprinting
               vascular structures. J Mater Res. 2021;36(19):3851-3864.  of vessel-like structures with multi-level fluidic channels.
               doi: 10.1557/s43578-021-00254-x                    ACS Biomater Sci Eng. 2017;3(3):399-408.
                                                                  doi: 10.1021/acsbiomaterials.6b00643
            161. Chalard A, Mauduit M, Souleille S, Joseph P, Malaquin L,
               Fitremann J. 3D printing of a biocompatible low molecular   173. Wang D, Maharjan S, Kuang X, et al. Microfluidic bioprinting
               weight supramolecular hydrogel by dimethylsulfoxide water   of tough hydrogel-based vascular conduits for functional
               solvent exchange. Addit Manuf. 2020;33(February):101162.  blood vessels. Sci Adv. 2022;8(43):1-18.
               doi: 10.1016/j.addma.2020.101162                   doi: 10.1126/sciadv.abq6900
            162. Colosi C, Costantini M, Latini R, et al. Rapid prototyping   174. Silva CA, Cortés-Rodriguez CJ, Hazur  J, Reakasame S,
               of  chitosan-coated  alginate  scaffolds  through the  use  of  a   Boccaccini AR. Rationaldesign of a triple-layered coaxial
               3D fiber deposition technique. J Mater Chem B. 2014;2(39):   extruder system: In silico and in vitro evaluations directed
               6779-6791.                                         towards optimizing cell viability.  Int JBioprint.  2020;6(4):
               doi: 10.1039/c4tb00732h                            96-105.
            163. Duchi S, Onofrillo C, O’Connell CD, et al. Handheld co-axial      doi: 10.18063/ijb.v6i4.282
               bioprinting: Application to in situ surgical cartilage repair.    175. Zuo Y, He X, Yang Y, et al. Microfluidic-based generation
               Sci Rep. 2017;7(1):5837.                           of functional microfibers for biomimetic complex tissue
               doi: 10.1038/s41598-017-05699-x                    construction. Acta Biomater. 2016;38:153-162.
            164. Hakimi N, Cheng R, Leng L, et al. Handheld skin printer: In      doi: 10.1016/j.actbio.2016.04.036
               situ formation of planar biomaterials and tissues. Lab Chip.   176. Li S, Liu Y, Li Y, Sun Y, Hu Q. A novel method for fabricating
               2018;18(10):1440-1451.                             engineered structures with branched micro-channel using
               doi: 10.1039/c7lc01236e                            hollow hydrogel fibers. Biomicrofluidics. 2016;10(6):064104.
            165. Ying G, Manríquez J, Wu D, et al. An open-source handheld      doi: 10.1063/1.4967456
               extruder loaded with pore-forming bioink for in situ wound   177. Puertas-Bartolomé M, Włodarczyk-Biegun MK, del Campo
               dressing. Mater Today Bio. 2020;8(July):100074.    A, Vázquez-Lasa B, Román JS. 3D printing of a reactive
               doi: 10.1016/j.mtbio.2020.100074                   hydrogel bio-ink using a static mixing tool.  Polymers.
            166. Pagan E, Stefanek E, Seyfoori A, et al. A handheld bioprinter   2020;12(9):1986.
               for multi-material printing of complex constructs.      doi: 10.3390/polym12091986
               Biofabrication. 2023;15(3):035012.              178. Fernando C, Johana E, Quevedo-moreno DA, et al. High-
               doi: 10.1088/1758-5090/acc42c                      throughput and continuous chaotic bioprinting of spatially
            167. Salaris F, Colosi C, Brighi C, et al.  3D bioprinted human   controlled  bacterial  microcosms.  ACS Biomater Sci Eng.
               cortical neural constructs derived from induced pluripotent   2021;7:2192-2197.
               stem cells. J Clin Med. 2019;8(1595):1-13.         doi: 10.1021/acsbiomaterials.0c01646
               doi: 10.3390%2Fjcm8101595                       179. Chávez-Madero C, de León-Derby MD, Samandari M,
            168. Yu Y, Shang L, Guo J, Wang J, Zhao Y. Design of capillary   et al.  Using chaotic advection for facile high-
               microfluidics  for  spinning  cell-laden  microfibers.   throughput fabrication of ordered multilayer micro- and
               Nat Protoc. 2018;13(11):2557-2579.                 nanostructures: Continuous chaotic printing. Biofabrication.
               doi: 10.1038/s41596-018-0051-4                     2020;12(3):35023.
                                                                  doi: 10.1088/1758-5090/ab84cc
            169. Gao  Q,  He  Y,  Fu  J,  Liu  A,  Ma  L.  Coaxial  nozzle-assisted
               3D bioprinting with built-in microchannels for nutrients   180. Samandari M, Alipanah F, Majidzadeh-A K, Alvarez
               delivery. Biomaterials. 2015;61:203-215.           MM, Santiago GT-de, Tamayol A.  Controlling cellular
               doi: 10.1016/j.biomaterials.2015.05.031            organization in bioprinting through designed 3D
                                                                  microcompartmentalization. Appl Phys Rev. 2021;8(2):1-14.
            170. Gao G, Park JY, Kim BS, Jang J, Cho D-W. Coaxial cell printing      doi: 10.1063/5.0040732
               of freestanding, perfusable, and functional in vitro vascular
               models for recapitulation of native vascular endothelium   181. Guimarães CF, Gasperini L, Ribeiro RS, Carvalho AF,
               pathophysiology. Adv Healthc Mater. 2018;7(23):1801102.  Marquesab AP, Reis RL.  High-throughput fabrication
               doi: 10.1002/adhm.201801102                        of cell-laden 3D biomaterial gradients.  Mater Horizons.
                                                                  2020;7(9):2414-2421.
            171. Wu Z, Cai H, Ao Z, Xu J, Heaps S, Guo F.  Microfluidic
               printing of tunable hollow microfibers for vascular tissue      doi: 10.1039/D0MH00818D
               engineering. Adv Mater Technol. 2021;6(8):1-9.  182. Lavrentieva A, Fleischhammer T, Enders A, Pirmahboub
               doi: 10.1002/admt.202000683                        H, Bahnemann J, Pepelanova I.   Fabrication of stiffness


            Volume 10 Issue 1 (2024)                        72                          https://doi.org/10.36922/ijb.1404
   75   76   77   78   79   80   81   82   83   84   85