Page 79 - IJB-10-1
P. 79
International Journal of Bioprinting Microfluidic-assisted 3D bioprinting
138. Kang E, Choi YY, Chae SK, Moon J-H, Chang J-Y, Lee S-H. 149. Solis LH, Ayala Y, Portillo S, Varela-Ramirez A, Aguilera R,
Microfluidic spinning of flat alginate fibers with grooves for Boland T. Thermal inkjet bioprinting triggers the activation
cell-aligning scaffolds. Adv Mater. 2012;24(31):4271-4277. of the VEGF pathway in human microvascular endothelial
doi: 10.1002/adma.201201232 cells in vitro. Biofabrication. 2019;11(4):045005.
doi: 10.1088/1758-5090/ab25f9
139. Celikkin N, Presutti D, Maiullari F, et al. Combining
rotary wet-spinning biofabrication and electro-mechanical 150. Saadi MASR, Maguire A, Pottackal NT, et al. Direct ink
stimulation for the in vitro production of functional myo- writing: A 3D printing technology for diverse materials. Adv
substitutes. Biofabrication. 2023;15(4):045012. Mater. 2022;34(28):1-57.
doi: 10.1088/1758-5090/ace934 doi: 10.1002/adma.202108855
140. Cidonio G, Glinka M, Dawson JI, Oreffo ROC. The cell 151. Jung Y, Shafranek RT, Tsui JH, Walcott J, Nelson
in the ink: Improving biofabrication by printing stem A, Kim D-H. 3D bioprinting of mechanically
cells for skeletal regenerative medicine. Biomaterials. tuned bioinks derived from cardiac decellularized
2019;209(March):10-24. extracellular matrix. Acta Biomater. 2021;119:
doi: 10.1016/j.biomaterials.2019.04.009 75-88.
doi: 10.1016/j.actbio.2020.11.006
141. Jia L, Han F, Yang H, et al. Microfluidic fabrication of 152. Connell CDO, Konate S, Onofrillo C, et al. Bioprinting
biomimetic helical hydrogel microfibers for blood-vessel- free-form co-axial bioprinting of a gelatin methacryloyl bio-
on-a-chip applications. Adv Healthc Mater. 2019;8(13):1-10. ink by direct in situ photo-crosslinking during extrusion.
doi: 10.1002/adhm.201900435 Bioprinting. 2020;19(April):e00087.
142. van Genderen AM, Valverde MG, Capendale PE, et al. Co- doi: 10.1016/j.bprint.2020.e00087
axial printing of convoluted proximal tubule for kidney 153. Bertlein S, Brown G, Lim KS, et al. Thiol–ene clickable
disease modeling. Biofabrication. 2022;14(4):044102. gelatin: A platform bioink for multiple 3D biofabrication
doi: 10.1088/1758-5090/ac7895 technologies. Adv Mater. 2017;29(44):1-6.
143. Xu H, Casillas J, Krishnamoorthy S, Xu C. Effects of Irgacure doi: 10.1002/adma.201703404
2959 and lithium physical properties, and microstructure in 154. Ooi HW, Mota C, ten Cate AT, Calore A, Moroni L, Baker
3D bioprinting of vascular-like constructs. Biomed Mater. MB. Thiol–ene alginate hydrogels as versatile bioinks for
2020;15(5):055021. bioprinting. Biomacromolecules. 2018;19(8):3390-3400.
doi: 10.1088/1748-605X/ab954e doi: 10.1021/acs.biomac.8b00696
144. Wang M, Li W, Mille LS, et al. Digital light processing 155. Bhattacharyya A, Janarthanan G, Kim T, et al. Modulation
based bioprinting with composable gradients. Adv Mater. of bioactive calcium phosphate micro/nanoparticle size
2022;34(1):2107038. and shape during in situ synthesis of photo-crosslinkable
doi: 10.1002/adma.202107038 gelatin methacryloyl based nanocomposite hydrogels
for 3D bioprinting and tissue engineering. Biomater Res.
145. Hogan J, Sun Y, Yu K, et al. Modeling the printability of 2022;26(1):54.
photocuring and strength adjustable hydrogel bioink doi: 10.1186/s40824-022-00301-6
during projection-based 3D bioprinting. J Manuf Process.
2021;69:583-592. 156. Rastin H, Ormsby RT, Atkins GJ, Losic D. 3D bioprinting
doi: 10.1088/1758-5090/aba413 of methylcellulose/gelatin-methacryloyl (MC/GelMA)
bioink with high shape integrity. ACS Appl Bio Mater.
146. Xie X, Wu S, Mou S, Guo N, Wang Z, Sun J. Microtissue- 2020;3(3):1815-1826.
based bioink as a chondrocyte microshelter for DLP doi: 10.1021/acsabm.0c00169
bioprinting. Adv Healthc Mater. 2022;11(22):2201877. 157. Bertassoni LE, Cardoso JC, Manoharan V, et al. Direct-write
doi: 10.1002/adhm.202201877
bioprinting of cell-laden methacrylated gelatin hydrogels.
147. Guifang G, Tomo Y, Karen H, Dai G, Cui X. Inkjet- Biofabrication. 2014;6(2):024105.
bioprinted acrylated peptides and PEG hydrogel with human doi: 10.1088/1758-5082/6/2/024105
mesenchymal stem cells promote robust bone and cartilage 158. Romanazzo S, Molley TG, Nemec S, et al. Synthetic bone-like
formation with minimal printhead clogging. Biotechnol J. structures through omnidirectional ceramic bioprinting in cell
2015;10(10):1568-1577. suspensions. Adv Funct Mater. 2021;2008216:1-12.
doi: 10.1002/biot.201400635 doi: 10.1002/adfm.202008216
148. Park JA, Yoon S, Kwon J, et al. Freeform micropatterning 159. Spencer AR, Sani ES, Soucy JR, et al. Bioprinting of a cell-
of living cells into cell culture medium using direct inkjet laden conductive hydrogel composite. ACS Appl Mater
printing. Sci Rep. 2017;7(1):14610. Interfaces. 2019;11:30518-30533.
doi: 10.1038/s41598-017-14726-w doi: 10.1021/acsami.9b07353
Volume 10 Issue 1 (2024) 71 https://doi.org/10.36922/ijb.1404

