Page 79 - IJB-10-1
        P. 79
     International Journal of Bioprinting                                     Microfluidic-assisted 3D bioprinting
            138. Kang E, Choi YY, Chae SK, Moon J-H, Chang J-Y, Lee S-H.   149. Solis LH, Ayala Y, Portillo S, Varela-Ramirez A, Aguilera R,
               Microfluidic spinning of flat alginate fibers with grooves for   Boland T. Thermal inkjet bioprinting triggers the activation
               cell-aligning scaffolds. Adv Mater. 2012;24(31):4271-4277.  of the VEGF pathway in human microvascular endothelial
               doi: 10.1002/adma.201201232                        cells in vitro. Biofabrication. 2019;11(4):045005.
                                                                  doi: 10.1088/1758-5090/ab25f9
            139. Celikkin N, Presutti D, Maiullari F, et al.  Combining
               rotary wet-spinning biofabrication and electro-mechanical   150. Saadi  MASR,  Maguire  A,  Pottackal  NT,  et  al.  Direct  ink
               stimulation for the in vitro production of functional myo-  writing: A 3D printing technology for diverse materials. Adv
               substitutes. Biofabrication. 2023;15(4):045012.    Mater. 2022;34(28):1-57.
               doi: 10.1088/1758-5090/ace934                      doi: 10.1002/adma.202108855
            140. Cidonio G, Glinka M, Dawson JI, Oreffo ROC. The cell   151. Jung  Y,  Shafranek  RT,  Tsui  JH,  Walcott  J,  Nelson
               in the ink: Improving biofabrication by printing stem   A, Kim D-H.  3D bioprinting of mechanically
               cells  for  skeletal  regenerative  medicine.  Biomaterials.   tuned bioinks derived from cardiac decellularized
               2019;209(March):10-24.                             extracellular  matrix.  Acta  Biomater.  2021;119:
               doi: 10.1016/j.biomaterials.2019.04.009            75-88.
                                                                  doi: 10.1016/j.actbio.2020.11.006
            141. Jia  L, Han F,  Yang H,  et al.  Microfluidic  fabrication of   152. Connell CDO, Konate S, Onofrillo C, et al.  Bioprinting
               biomimetic  helical  hydrogel  microfibers  for  blood-vessel-  free-form co-axial bioprinting of a gelatin methacryloyl bio-
               on-a-chip applications. Adv Healthc Mater. 2019;8(13):1-10.  ink by direct in situ photo-crosslinking during extrusion.
               doi: 10.1002/adhm.201900435                        Bioprinting. 2020;19(April):e00087.
            142. van Genderen AM, Valverde MG, Capendale PE, et al. Co-     doi: 10.1016/j.bprint.2020.e00087
               axial printing of convoluted proximal tubule for kidney   153. Bertlein S, Brown G, Lim KS, et al.  Thiol–ene clickable
               disease modeling. Biofabrication. 2022;14(4):044102.  gelatin:  A  platform  bioink  for  multiple  3D  biofabrication
               doi: 10.1088/1758-5090/ac7895                      technologies. Adv Mater. 2017;29(44):1-6.
            143. Xu H, Casillas J, Krishnamoorthy S, Xu C. Effects of Irgacure      doi: 10.1002/adma.201703404
               2959 and lithium physical properties, and microstructure in   154. Ooi HW, Mota C, ten Cate AT, Calore A, Moroni L, Baker
               3D  bioprinting  of  vascular-like  constructs.  Biomed Mater.   MB.  Thiol–ene  alginate  hydrogels  as  versatile  bioinks  for
               2020;15(5):055021.                                 bioprinting. Biomacromolecules. 2018;19(8):3390-3400.
               doi: 10.1088/1748-605X/ab954e                      doi: 10.1021/acs.biomac.8b00696
            144. Wang M, Li W, Mille LS, et al.  Digital light processing   155. Bhattacharyya A, Janarthanan G, Kim T, et al. Modulation
               based bioprinting with composable gradients.  Adv Mater.   of bioactive calcium phosphate micro/nanoparticle size
               2022;34(1):2107038.                                and shape during in situ synthesis of photo-crosslinkable
               doi: 10.1002/adma.202107038                        gelatin methacryloyl  based  nanocomposite  hydrogels
                                                                  for 3D bioprinting and tissue engineering.  Biomater Res.
            145. Hogan J, Sun Y, Yu K, et al.  Modeling the printability of   2022;26(1):54.
               photocuring and strength adjustable hydrogel bioink      doi: 10.1186/s40824-022-00301-6
               during projection-based 3D bioprinting.  J Manuf Process.
               2021;69:583-592.                                156. Rastin H, Ormsby RT, Atkins GJ, Losic D. 3D bioprinting
               doi: 10.1088/1758-5090/aba413                      of  methylcellulose/gelatin-methacryloyl  (MC/GelMA)
                                                                  bioink with high shape integrity.  ACS Appl Bio Mater.
            146. Xie X, Wu S, Mou S, Guo N, Wang Z, Sun J. Microtissue-  2020;3(3):1815-1826.
               based bioink as a chondrocyte microshelter for DLP      doi: 10.1021/acsabm.0c00169
               bioprinting. Adv Healthc Mater. 2022;11(22):2201877.  157. Bertassoni LE, Cardoso JC, Manoharan V, et al. Direct-write
               doi: 10.1002/adhm.202201877
                                                                  bioprinting  of  cell-laden  methacrylated  gelatin  hydrogels.
            147. Guifang G, Tomo Y, Karen H, Dai G, Cui X. Inkjet-  Biofabrication. 2014;6(2):024105.
               bioprinted acrylated peptides and PEG hydrogel with human      doi: 10.1088/1758-5082/6/2/024105
               mesenchymal stem cells promote robust bone and cartilage   158.  Romanazzo S, Molley TG, Nemec S, et al. Synthetic bone-like
               formation with minimal printhead clogging.  Biotechnol J.   structures through omnidirectional ceramic bioprinting in cell
               2015;10(10):1568-1577.                             suspensions. Adv Funct Mater. 2021;2008216:1-12.
               doi: 10.1002/biot.201400635                        doi: 10.1002/adfm.202008216
            148. Park JA, Yoon S, Kwon J, et al. Freeform micropatterning   159. Spencer AR, Sani ES, Soucy JR, et al. Bioprinting of a cell-
               of living cells into cell culture medium using direct inkjet   laden conductive hydrogel composite.  ACS Appl Mater
               printing. Sci Rep. 2017;7(1):14610.                Interfaces. 2019;11:30518-30533.
               doi: 10.1038/s41598-017-14726-w                    doi: 10.1021/acsami.9b07353
            Volume 10 Issue 1 (2024)                        71                          https://doi.org/10.36922/ijb.1404
     	
