Page 74 - IJB-10-1
        P. 74
     International Journal of Bioprinting                                     Microfluidic-assisted 3D bioprinting
            22.  Thaweskulchai T, Schulte A. A low-cost 3-in-1 3d printer   hydrogels leads to functionally organized myofibers in vitro
               as a  tool  for  the  fabrication of flow-through channels  of   and in vivo. Biomaterials. 2017;131:98-110.
               microfluidic systems. Micromachines. 2021;12(8):947.     doi: 10.1016/j.biomaterials.2017.03.026
               doi: 10.3390/mi12080947
                                                               34.  Idaszek J, Costantini M, Karlsen TA, et al. 3D bioprinting
            23.  Zhu F, Friedrich T, Nugegoda D, Kaslin J, Wlodkowic D.   of hydrogel constructs with cell and material gradients
               Assessment of the biocompatibility of three-dimensional-  for the regeneration of full-thickness chondral defect
               printed polymers using multispecies toxicity tests.   using a microfluidic  printing head.  Biofabrication.
               Biomicrofluidics. 2015;9(6):61103.                 2019;11(4):044101.
               doi: 10.1063/1.4939031                             doi: 10.1088/1758-5090/ab2622
            24.  MacDonald NP, Zhu F, Hall CJ, et al.  Assessment of   35.  Behroodi E, Latifi H, Bagheri Z,  Ermis E, Roshani S,
               biocompatibility of 3D printed photopolymers using   Moghaddam MS.  A combined 3D printing/CNC micro-
               zebrafish embryo toxicity assays.  Lab Chip.  2016;16(2):   milling method to fabricate a large-scale microfluidic device
               291-297.                                           with  the  small  size  3D  architectures:  An  application  for
               doi: 10.1039/c5lc01374g                            tumor spheroid production. Sci Rep. 2020;10(1):1-14.
            25.  Joseph  Rey  JRH,  Chen  Q,  Maalihan  RD,  et  al.  3D      doi: 10.1038/s41598-020-79015-5
               printing of biomedically relevant polymer materials and   36.  Kyle  S, Jessop ZM, Al-Sabah A,  Whitaker IS.  Printability
               biocompatibility. MRS Commun. 2021;11(2):197-212.  of candidate biomaterials for extrusion based 3D printing:
               doi: 10.1557/s43579-021-00038-8                    State-of-the-art. Adv Healthc Mater. 2017;6(16):1-16.
            26.  de Almeida Monteiro Melo Ferraz M, Nagashima JB, Venzac      doi: 10.1002/adhm.201700264
               B, Le Gac S, Songsasen N. 3D printed mold leachates in   37.  Waheed S, Cabot JM, Macdonald NP, et al.  3D printed
               PDMS microfluidic devices. Sci Rep. 2020;10(1):994.  microfluidic devices: Enablers and barriers.  Lab  Chip.
               doi: 10.1038/s41598-020-57816-y                    2016;16(11):1993-2013.
            27.  Zhou Z, Chen D, Wang X, Jiang J. Milling positive master      doi: 10.1039/c6lc00284f
               for  polydimethylsiloxane  microfluidic  devices:  The   38.  Macdonald NP, Cabot JM, Smejkal P, Guijt RM, Paull B,
               microfabrication and roughness issues.  Micromachines.   Breadmore MC.  Comparing microfluidic performance of
               2017;8(10).                                        three-dimensional (3D) printing platforms.  Anal Chem.
               doi: 10.3390/mi8100287                             2017;89(7):3858-3866.
            28.  Guckenberger DJ, De Groot TE, Wan AMD, Beebea DJ, Young      doi: 10.1021/acs.analchem.7b00136
               EWK. Micromilling: A method for ultra-rapid prototyping   39.  Ho CMB, Ng SH, Li KHH, Yoon Y-J. 3D printed microfluidics
               of plastic microfluidic devices.  Lab Chip.  2015;15(11):   for biological applications.  Lab Chip.  2015;15(18):
               2364-2378.                                         3627-3637.
               doi: 10.1039/c5lc00234f                            doi: 10.1039/c5lc00685f
            29.  Ku X, Zhang Z, Liu X, Chen L. Low-cost rapid prototyping   40.  Zeraatkar M, de Tullio MD, Pricci A, Pignatelli F. Exploiting
               of glass microfluidic devices using a micromilling technique.   limitations of fused deposition modeling to enhance mixing
               Microfluid Nanofluidics. 2018;22(8):1-8.           in 3D printed microfluidic devices.  Rapid Prototyp J.
               doi: 10.1007/s10404-018-2104-y                     2021;27(10):1850-1859.
            30.  Hossain MM, Rahman T. Low cost micro milling machine      doi: 10.1108/RPJ-03-2021-0051
               for prototyping plastic microfluidic devices.  Proceedings.   41.  Quero RF, Domingos Da Silveira G, Fracassi Da Silva JA,
               2018;2(13):707.                                    de Jesus DP. Understanding and improving FDM 3D printing
               doi: 10.3390/proceedings2130707                    to fabricate high-resolution and optically transparent
            31.  Virumbrales-Muñoz M, Livingston MK, Farooqui M, Skala   microfluidic devices. Lab Chip. 2021;21(19):3715-3729.
               MC, Beebe DJ, Ayuso JM. Development of a microfluidic      doi: 10.1039/d1lc00518a
               array to study drug response in breast cancer.  Molecules.   42.  Ballacchino G, Weaver E, Mathew E, et al. Manufacturing of
               2019;24(23):1-12.                                  3d-printed microfluidic devices for the synthesis of drug-loaded
               doi: 10.3390/molecules24234385
                                                                  liposomal formulations. Int J Mol Sci. 2021;22(15):8064.
            32.  Costantini M, Idaszek J, Szöke K, et al. 3D bioprinting of      doi: 10.3390/ijms22158064
               BM-MSCs-loaded ECM biomimetic hydrogels for in vitro   43.  Mehta V, Vilikkathala Sudhakaran S, Rath SN. Facile
               neocartilage formation. Biofabrication. 2016;8(3):035002.  route for 3D printing of transparent PETg-based hybrid
               doi: 10.1088/1758-5090/8/3/035002
                                                                  biomicrofluidic devices promoting cell adhesion.  ACS
            33.  Costantini M, Testa S, Mozetic P, et al.  Microfluidic-  Biomater Sci Eng. 2021;7(8):3947-3963.
               enhanced 3D bioprinting of aligned myoblast-laden      doi: 10.1021/acsbiomaterials.1c00633
            Volume 10 Issue 1 (2024)                        66                          https://doi.org/10.36922/ijb.1404
     	
