Page 74 - IJB-10-1
P. 74
International Journal of Bioprinting Microfluidic-assisted 3D bioprinting
22. Thaweskulchai T, Schulte A. A low-cost 3-in-1 3d printer hydrogels leads to functionally organized myofibers in vitro
as a tool for the fabrication of flow-through channels of and in vivo. Biomaterials. 2017;131:98-110.
microfluidic systems. Micromachines. 2021;12(8):947. doi: 10.1016/j.biomaterials.2017.03.026
doi: 10.3390/mi12080947
34. Idaszek J, Costantini M, Karlsen TA, et al. 3D bioprinting
23. Zhu F, Friedrich T, Nugegoda D, Kaslin J, Wlodkowic D. of hydrogel constructs with cell and material gradients
Assessment of the biocompatibility of three-dimensional- for the regeneration of full-thickness chondral defect
printed polymers using multispecies toxicity tests. using a microfluidic printing head. Biofabrication.
Biomicrofluidics. 2015;9(6):61103. 2019;11(4):044101.
doi: 10.1063/1.4939031 doi: 10.1088/1758-5090/ab2622
24. MacDonald NP, Zhu F, Hall CJ, et al. Assessment of 35. Behroodi E, Latifi H, Bagheri Z, Ermis E, Roshani S,
biocompatibility of 3D printed photopolymers using Moghaddam MS. A combined 3D printing/CNC micro-
zebrafish embryo toxicity assays. Lab Chip. 2016;16(2): milling method to fabricate a large-scale microfluidic device
291-297. with the small size 3D architectures: An application for
doi: 10.1039/c5lc01374g tumor spheroid production. Sci Rep. 2020;10(1):1-14.
25. Joseph Rey JRH, Chen Q, Maalihan RD, et al. 3D doi: 10.1038/s41598-020-79015-5
printing of biomedically relevant polymer materials and 36. Kyle S, Jessop ZM, Al-Sabah A, Whitaker IS. Printability
biocompatibility. MRS Commun. 2021;11(2):197-212. of candidate biomaterials for extrusion based 3D printing:
doi: 10.1557/s43579-021-00038-8 State-of-the-art. Adv Healthc Mater. 2017;6(16):1-16.
26. de Almeida Monteiro Melo Ferraz M, Nagashima JB, Venzac doi: 10.1002/adhm.201700264
B, Le Gac S, Songsasen N. 3D printed mold leachates in 37. Waheed S, Cabot JM, Macdonald NP, et al. 3D printed
PDMS microfluidic devices. Sci Rep. 2020;10(1):994. microfluidic devices: Enablers and barriers. Lab Chip.
doi: 10.1038/s41598-020-57816-y 2016;16(11):1993-2013.
27. Zhou Z, Chen D, Wang X, Jiang J. Milling positive master doi: 10.1039/c6lc00284f
for polydimethylsiloxane microfluidic devices: The 38. Macdonald NP, Cabot JM, Smejkal P, Guijt RM, Paull B,
microfabrication and roughness issues. Micromachines. Breadmore MC. Comparing microfluidic performance of
2017;8(10). three-dimensional (3D) printing platforms. Anal Chem.
doi: 10.3390/mi8100287 2017;89(7):3858-3866.
28. Guckenberger DJ, De Groot TE, Wan AMD, Beebea DJ, Young doi: 10.1021/acs.analchem.7b00136
EWK. Micromilling: A method for ultra-rapid prototyping 39. Ho CMB, Ng SH, Li KHH, Yoon Y-J. 3D printed microfluidics
of plastic microfluidic devices. Lab Chip. 2015;15(11): for biological applications. Lab Chip. 2015;15(18):
2364-2378. 3627-3637.
doi: 10.1039/c5lc00234f doi: 10.1039/c5lc00685f
29. Ku X, Zhang Z, Liu X, Chen L. Low-cost rapid prototyping 40. Zeraatkar M, de Tullio MD, Pricci A, Pignatelli F. Exploiting
of glass microfluidic devices using a micromilling technique. limitations of fused deposition modeling to enhance mixing
Microfluid Nanofluidics. 2018;22(8):1-8. in 3D printed microfluidic devices. Rapid Prototyp J.
doi: 10.1007/s10404-018-2104-y 2021;27(10):1850-1859.
30. Hossain MM, Rahman T. Low cost micro milling machine doi: 10.1108/RPJ-03-2021-0051
for prototyping plastic microfluidic devices. Proceedings. 41. Quero RF, Domingos Da Silveira G, Fracassi Da Silva JA,
2018;2(13):707. de Jesus DP. Understanding and improving FDM 3D printing
doi: 10.3390/proceedings2130707 to fabricate high-resolution and optically transparent
31. Virumbrales-Muñoz M, Livingston MK, Farooqui M, Skala microfluidic devices. Lab Chip. 2021;21(19):3715-3729.
MC, Beebe DJ, Ayuso JM. Development of a microfluidic doi: 10.1039/d1lc00518a
array to study drug response in breast cancer. Molecules. 42. Ballacchino G, Weaver E, Mathew E, et al. Manufacturing of
2019;24(23):1-12. 3d-printed microfluidic devices for the synthesis of drug-loaded
doi: 10.3390/molecules24234385
liposomal formulations. Int J Mol Sci. 2021;22(15):8064.
32. Costantini M, Idaszek J, Szöke K, et al. 3D bioprinting of doi: 10.3390/ijms22158064
BM-MSCs-loaded ECM biomimetic hydrogels for in vitro 43. Mehta V, Vilikkathala Sudhakaran S, Rath SN. Facile
neocartilage formation. Biofabrication. 2016;8(3):035002. route for 3D printing of transparent PETg-based hybrid
doi: 10.1088/1758-5090/8/3/035002
biomicrofluidic devices promoting cell adhesion. ACS
33. Costantini M, Testa S, Mozetic P, et al. Microfluidic- Biomater Sci Eng. 2021;7(8):3947-3963.
enhanced 3D bioprinting of aligned myoblast-laden doi: 10.1021/acsbiomaterials.1c00633
Volume 10 Issue 1 (2024) 66 https://doi.org/10.36922/ijb.1404

