Page 77 - IJB-10-1
P. 77
International Journal of Bioprinting Microfluidic-assisted 3D bioprinting
91. Daniele MA, Radom K, Ligler FS. Microfluidic fabrication 102. Chopin-Doroteo M, Mandujano-Tinoco EA, Krötzsch E.
of multiaxial microvessels via hydrodynamic shaping. RSC Tailoring of the rheological properties of bioinks to improve
Adv. 2014;4:23440-23446. bioprinting and bioassembly for tissue replacement. Biochim
doi: 10.1039/c4ra03667k Biophys Acta - Gen Subj. 2021;1865(2):129782.
92. Williams CG, Malik AN, Kim TK, Manson PN, Elisseeff doi: 10.1016/j.bbagen.2020.129782
JH. Variable cytocompatibility of six cell lines with 103. Cooke ME, Rosenzweig DH. The rheology of direct and
photoinitiators used for polymerizing hydrogels and cell suspended extrusion bioprinting. APL Bioeng. 2021;5(1):011502.
encapsulation. Biomaterials. 2005;26(11):1211-1218. doi: 10.1063/5.0031475
doi: 10.1016/j.biomaterials.2004.04.024
104. Townsend JM, Beck EC, Gehrke SH, Berkland CJ, Detamore
93. Lim KS, Klotz BJ, Lindberg GCJ, et al. Visible light cross- MS. Flow behavior prior to crosslinking: The need for
linking of gelatin hydrogels offers an enhanced cell precursor rheology for placement of hydrogels in medical
microenvironment with improved light penetration depth. applications and for 3D bioprinting. Prog Polym Sci.
Macromol Biosci. 2019;19(6):1-14. 2019;91:126-140.
doi: 10.1002/mabi.201900098 doi: 10.1016/j.progpolymsci.2019.01.003
94. He X, Wang W, Deng K, et al. Microfluidic fabrication of 105. Rudolph N, Osswald TA. Polymer Rheology: Fundamentals
chitosan microfibers with controllable internals from and Applications, Carl Hanser Verlag GmbH & Company
tubular to peapodlike structures. RSC Adv. 2015;5: KG; 2014.
928-936. https://books.google.pl/books?id=11ctBQAAQBAJ
doi: 10.1039/c4ra10696b
106. Bird RB, Armstrong RC, Hassager O. Dynamics of Polymeric
95. Cui T, Yu J, Li Q, et al. Large-scale fabrication of robust Liquids, Volume 1: Fluid Mechanics, Wiley; 1987.
artificial skins from a biodegradable sealant-loaded
nanofiber scaffold to skin tissue via microfluidic blow- 107. Doi M, Edwards SF. The Theory of Polymer Dynamics,
spinning. Adv Mater. 2020;2000982(32):1-11. Clarendon Press; 1986.
doi: 10.1002/adma.202000982 https://books.google.pl/books?id=sAFQzQEACAAJ
96. Jia J, Richards DJ, Pollard S, et al. Engineering alginate 108. Maxwell JC. On the dynamical theory of gases. Philos Trans
as bioink for bioprinting. Acta Biomater. 2014;10(10): R Soc London. 1867;157:49-88.
4323-4331. http://www.jstor.org/stable/108968
doi: 10.1016/j.actbio.2014.06.034
109. Bird RB, Armstrong RC, Hassager O. Dynamics of Polymeric
97. Hernández-González AC, Téllez-Jurado L, Rodríguez- Liquids, Volume 2: Kinetic Theory, Wiley; 1987.
Lorenzo LM. Alginate hydrogels for bone tissue engineering, 110. Pourmasoumi P, Moghaddam A, Mahand SN, et al. A
from injectables to bioprinting: A review. Carbohydr Polym. review on the recent progress, opportunities, and challenges
2020;229(October 2019):115514.
doi: 10.1016/j.carbpol.2019.115514 of 4D printing and bioprinting in regenerative medicine.
J Biomater Sci Polym Ed. 2023;34(1):108-146.
98. Costantini M, Colosi C, Świe¸szkowski W, Barbetta A. doi: 10.1080/09205063.2022.2110480
Co-axial wet-spinning in 3D bioprinting: State of the art and
future perspective of microfluidic integration. Biofabrication. 111. Paxton N, Smolan W, Böck T, Melchels F, Groll J, Jungst
T. Proposal to assess printability of bioinks for extrusion-
2019;11(1):012001.
doi: 10.1088/1758-5090/aae605 based bioprinting and evaluation of rheological properties
governing bioprintability. Biofabrication. 2017;9(4):044107.
99. Du XY, Li Q, Wu G, Chen S. Multifunctionalmicro/ doi: 10.1088/1758-5090/aa8dd8
nanoscale fibers based on microfluidic spinning technology.
Adv Mater. 2019;31(52):1-38. 112. Gregory T, Benhal P, Scutte A, et al. Rheological
doi: 10.1002/adma.201903733 characterization of cell-laden alginate-gelatin hydrogels
for 3D biofabrication. J Mech Behav Biomed Mater.
100. Cidonio G, Costantini M, Pierini F, Scognamiglio C, 2022;136(September):105474.
Agarwald T, Barbetta A. 3D printing of biphasic inks: doi: 10.1016/j.jmbbm.2022.105474
beyond single-scale architectural control. J Mater Chem C.
2021;9(37):12489-12508. 113. Cooke ME, Rosenzweig DH. The rheology of direct and
doi: 10.1039/D1TC02117F suspended extrusion bioprinting. APL Bioeng. 2021;5(1):011502.
doi: 10.1063/5.0031475
101. Sivashanmugam A, Arun Kumar R, Vishnu Priya M, Nair
SV, Jayakumar R. An overview of injectable polymeric 114. Filippi M, Buchner T, Yasa O, Weirich S, Katzschmann RK.
hydrogels for tissue engineering. Eur Polym J. 2015;72: Microfluidic tissue engineering and bio-actuation. Adv
543-565. Mater. 2022;34(23):2108427.
doi: 10.1016/j.eurpolymj.2015.05.014 doi: 10.1002/adma.202108427
Volume 10 Issue 1 (2024) 69 https://doi.org/10.36922/ijb.1404

