Page 77 - IJB-10-1
P. 77

International Journal of Bioprinting                                     Microfluidic-assisted 3D bioprinting




            91.  Daniele MA, Radom K, Ligler FS. Microfluidic fabrication   102. Chopin-Doroteo M, Mandujano-Tinoco EA, Krötzsch E.
               of multiaxial microvessels via hydrodynamic shaping. RSC   Tailoring of the rheological properties of bioinks to improve
               Adv. 2014;4:23440-23446.                           bioprinting and bioassembly for tissue replacement. Biochim
               doi: 10.1039/c4ra03667k                            Biophys Acta - Gen Subj. 2021;1865(2):129782.
            92.  Williams CG, Malik AN, Kim TK, Manson PN, Elisseeff      doi: 10.1016/j.bbagen.2020.129782
               JH.  Variable  cytocompatibility  of  six  cell  lines  with   103.  Cooke ME, Rosenzweig DH. The rheology of direct and
               photoinitiators used for polymerizing hydrogels and cell   suspended extrusion bioprinting. APL Bioeng. 2021;5(1):011502.
               encapsulation. Biomaterials. 2005;26(11):1211-1218.     doi: 10.1063/5.0031475
               doi: 10.1016/j.biomaterials.2004.04.024
                                                               104. Townsend JM, Beck EC, Gehrke SH, Berkland CJ, Detamore
            93.  Lim KS, Klotz BJ, Lindberg GCJ, et al. Visible light cross-  MS. Flow behavior prior to crosslinking: The need for
               linking of gelatin hydrogels offers an enhanced cell   precursor rheology for placement of hydrogels in medical
               microenvironment with improved light penetration depth.   applications and for 3D bioprinting.  Prog Polym Sci.
               Macromol Biosci. 2019;19(6):1-14.                  2019;91:126-140.
               doi: 10.1002/mabi.201900098                        doi: 10.1016/j.progpolymsci.2019.01.003
            94.  He X, Wang W, Deng K, et al. Microfluidic fabrication of   105. Rudolph N, Osswald TA. Polymer Rheology: Fundamentals
               chitosan microfibers with controllable internals from   and Applications,  Carl  Hanser  Verlag  GmbH  &  Company
               tubular to peapodlike structures.  RSC Adv.  2015;5:   KG; 2014.
               928-936.                                           https://books.google.pl/books?id=11ctBQAAQBAJ
               doi: 10.1039/c4ra10696b
                                                               106. Bird RB, Armstrong RC, Hassager O. Dynamics of Polymeric
            95.  Cui T, Yu J, Li Q, et al.  Large-scale fabrication of robust   Liquids, Volume 1: Fluid Mechanics, Wiley; 1987.
               artificial skins from a biodegradable sealant-loaded
               nanofiber scaffold to skin tissue via microfluidic blow-  107. Doi M, Edwards SF.  The Theory of Polymer Dynamics,
               spinning. Adv Mater. 2020;2000982(32):1-11.        Clarendon Press; 1986.
               doi: 10.1002/adma.202000982                        https://books.google.pl/books?id=sAFQzQEACAAJ
            96.  Jia J, Richards DJ, Pollard S, et al.  Engineering alginate   108. Maxwell JC. On the dynamical theory of gases. Philos Trans
               as bioink  for bioprinting.  Acta Biomater.  2014;10(10):   R Soc London. 1867;157:49-88.
               4323-4331.                                         http://www.jstor.org/stable/108968
               doi: 10.1016/j.actbio.2014.06.034
                                                               109. Bird RB, Armstrong RC, Hassager O. Dynamics of Polymeric
            97.  Hernández-González AC, Téllez-Jurado L, Rodríguez-  Liquids, Volume 2: Kinetic Theory, Wiley; 1987.
               Lorenzo LM. Alginate hydrogels for bone tissue engineering,   110. Pourmasoumi  P,  Moghaddam A,  Mahand  SN,  et al.  A
               from injectables to bioprinting: A review. Carbohydr Polym.   review on the recent progress, opportunities, and challenges
               2020;229(October 2019):115514.
               doi: 10.1016/j.carbpol.2019.115514                 of 4D printing and bioprinting in regenerative medicine.
                                                                  J Biomater Sci Polym Ed. 2023;34(1):108-146.
            98.  Costantini M, Colosi C, Świe¸szkowski W, Barbetta A.       doi: 10.1080/09205063.2022.2110480
               Co-axial wet-spinning in 3D bioprinting: State of the art and
               future perspective of microfluidic integration. Biofabrication.   111. Paxton  N,  Smolan  W,  Böck  T, Melchels  F,  Groll  J,  Jungst
                                                                  T. Proposal to assess printability of bioinks for extrusion-
               2019;11(1):012001.
               doi: 10.1088/1758-5090/aae605                      based bioprinting and evaluation of rheological properties
                                                                  governing bioprintability. Biofabrication. 2017;9(4):044107.
            99.  Du XY, Li Q, Wu G, Chen S. Multifunctionalmicro/     doi: 10.1088/1758-5090/aa8dd8
               nanoscale fibers based on microfluidic spinning technology.
               Adv Mater. 2019;31(52):1-38.                    112. Gregory T, Benhal P, Scutte A, et al.  Rheological
               doi: 10.1002/adma.201903733                        characterization of cell-laden alginate-gelatin hydrogels
                                                                  for 3D biofabrication.  J Mech Behav  Biomed  Mater.
            100. Cidonio G, Costantini M, Pierini F, Scognamiglio C,    2022;136(September):105474.
               Agarwald T, Barbetta A.   3D printing of biphasic inks:      doi: 10.1016/j.jmbbm.2022.105474
               beyond single-scale architectural control. J Mater Chem C.
               2021;9(37):12489-12508.                         113.  Cooke ME, Rosenzweig DH. The rheology of direct and
               doi: 10.1039/D1TC02117F                            suspended extrusion bioprinting. APL Bioeng. 2021;5(1):011502.
                                                                  doi: 10.1063/5.0031475
            101. Sivashanmugam A, Arun Kumar R, Vishnu Priya M, Nair
               SV, Jayakumar R. An overview of injectable polymeric   114. Filippi M, Buchner T, Yasa O, Weirich S, Katzschmann RK.
               hydrogels for tissue engineering.  Eur  Polym  J.  2015;72:   Microfluidic tissue engineering and bio-actuation.  Adv
               543-565.                                           Mater. 2022;34(23):2108427.
               doi: 10.1016/j.eurpolymj.2015.05.014               doi: 10.1002/adma.202108427


            Volume 10 Issue 1 (2024)                        69                          https://doi.org/10.36922/ijb.1404
   72   73   74   75   76   77   78   79   80   81   82