Page 78 - IJB-10-1
        P. 78
     International Journal of Bioprinting                                     Microfluidic-assisted 3D bioprinting
            115. Cheng Y, Yu Y, Fu F, et al. Controlled fabrication of bioactive   126. Hassan I, Selvaganapathy PR. Microfluidic printheads
               microfibers for creating tissue constructs using microfluidic   for highly switchable multimaterial 3D printing of soft
               techniques.  ACS Appl Mater Interfaces.  2016;8(2):   materials. Adv Mater Technol. 2022;2101709:1-10.
               1080-1086.                                         doi: 10.1002/admt.202101709
               doi: 10.1021/acsami.5b11445                     127. Hardin JO, Ober TJ, Valentine AD, Lewis JA. Microfluidic
            116. Boyd DA, Shields AR, Howell PB, Ligler FS. Design and   printheads for multimaterial 3D printing of viscoelastic
               fabrication of uniquely shaped thiol–ene microfibers using   inks. Adv Mater, 2015;27(21):3279-3284.
               a two-stage hydrodynamic focusing design.  Lab Chip.      doi: 10.1002/adma.201500222
               2013;13:3105-3110.                              128. Zhang L, Fu L, Zhang X, Chen L, Cai Q, Yang X.
               doi: 10.1039/c3lc50413a                            Hierarchical and heterogeneous hydrogel system as
            117. Kobayashi A, Yamakoshi K, Yajima Y, Utoh R, Yamada M,   a  promising  strategy  for diversified  interfacial  tissue
               Seki M.  Preparation of stripe-patterned heterogeneous   regeneration. Biomater Sci. 2021;9(5):1547-1573.
               hydrogel sheets using micro fluidic devices for high-density      doi: 10.1039/D0BM01595D
               coculture  of  hepatocytes  and  fibroblasts.  J  Biosci  Bioeng.   129. Chai N, Zhang J, Zhang Q, et al.  Construction of 3D
               2013;116(6):761-767.                               printed constructs based on microfluidic microgel for bone
               doi: 10.1016/j.jbiosc.2013.05.034                  regeneration. Compos Part B Eng. 2021;223(June):109100.
            118. Gursoy A, Iranshahi K, Wei K, et al. Facile fabrication of      doi: 10.1016/j.compositesb.2021.109100
               microfluidic chips for 3D hydrodynamic focusing and wet   130. Kamperman T, Henke S, van den Berg A, et al. Single cell
               spinning of polymeric fibers. Polymers (Basel). 2020;12(3):   microgel based modular bioinks for uncoupled cellular
               1-13.                                              micro- and macroenvironments.  Adv Healthc  Mater.
               doi: 10.3390/polym12030633                         2017;6(3):1600913.
            119. Attalla R, Ling C, Selvaganapathy P. Fabrication and      doi: 10.1002/adhm.201600913
               characterization of gels with integrated channels using 3D   131. Kim B, Kim I, Choi W, Kim SW, Kim J, Lim
               printing with microfluidic nozzle for tissue engineering   G.   Fabrication  of  cell-encapsulated  alginate
               applications. Biomed Microdevices. 2016;18(1):17.  microfiber  scaffold  using  microfluidic  channel.
               doi: 10.1007/s10544-016-0042-6                     J Manuf Sci Eng. 2008;130(2):0210161-0210166.
            120. Wei D, Sun J, Bolderson J, et al.  Continuous fabrication      doi: 10.1115/1.2898576
               and assembly of spatial cell-laden fibers for a tissue-like   132. Yao K, Li W, Li K, et al. Simple fabrication of multicomponent
               construct via a photolithographic-based microfluidic chip.   heterogeneous fibers for cell co-culture via microfluidic
               ACS Appl Mater Interfaces. 2017;9:14606-14617.     spinning. Macromol Biosci. 2020;20(3):1900395.
               doi: 10.1021/acsami.7b00078                        doi: 10.1002/mabi.201900395
            121. Pi Q, Maharjan S, Yan X, et al. Digitally tunable microfluidic   133. Oh J, Kim K, Won SW, et al.  Microfluidic fabrication of
               bioprinting of multilayered cannular tissues.  Adv  Mater.   cell adhesive chitosan microtubes.  Biomed Microdevices.
               2018;30(43):1-10.                                  2013;15(3):465-472.
               doi: 10.1002/adma.201706913                        doi: 10.1007/s10544-013-9746-z
            122. Xiao Y, Yang C, Zhai X, et al. Bioinspired tough and strong   134. Novosel EC, Kleinhans C, Kluger PJ. Vascularization is the
               fibers with hierarchical  core–shell  structure.  Adv Mater   key challenge in tissue engineering.  Adv Drug Deliv Rev.
               Interfaces. 2023;10(2):2201962.                    2011;63(4-5):300-311.
               doi: 10.1002/admi.202201962                        doi: 10.1016/j.addr.2011.03.004
            123. Colosi C, Shin SR, Manoharan V, et al.  Microfluidic   135. Cheng Y, Zheng F, Lu J, et al.  Bioinspired
               bioprinting of heterogeneous 3D tissue constructs using   multicompartmental microfibers from microfluidics.
               low-viscosity bioink. Adv Mater, 2016;28(4):677-684.  Adv Mater, 2014;26(30):5184-5190.
               doi: 10.1002/adma.201503310                        doi: 10.1002/adma.201400798
            124. Feng F, He J, Li J, Mao M, Li D. Multicomponent bioprinting   136. Cheng J, Jun Y, Qin J, Lee S-H. Electrospinning versus
               of heterogeneous hydrogel constructs based on microfluidic   microfluidic spinning of functional fibers for biomedical
               printheads. Int JBioprint. 2019;5(2):39-48.        applications. Biomaterials. 2017;114:121-143.
               doi: 10.18063/ijb.v5i2.202                         doi: 10.1016/j.biomaterials.2016.10.040
            125. Miri AK, Nieto D, Iglesias L, et al.  Microfluidics-enabled   137. Jun Y, Kang E, Chae S, Lee S-H. Microfluidic spinning of
               multimaterial maskless stereolithographic bioprinting. Adv   micro- and nano-scale fibers for tissue engineering.  Lab
               Mater. 2018;30(27):1-9.                            Chip. 2014;14(13):2145-2160.
               doi: 10.1002/adma.201800242                        doi: 10.1039/c3lc51414e
            Volume 10 Issue 1 (2024)                        70                          https://doi.org/10.36922/ijb.1404
     	
