Page 78 - IJB-10-1
P. 78
International Journal of Bioprinting Microfluidic-assisted 3D bioprinting
115. Cheng Y, Yu Y, Fu F, et al. Controlled fabrication of bioactive 126. Hassan I, Selvaganapathy PR. Microfluidic printheads
microfibers for creating tissue constructs using microfluidic for highly switchable multimaterial 3D printing of soft
techniques. ACS Appl Mater Interfaces. 2016;8(2): materials. Adv Mater Technol. 2022;2101709:1-10.
1080-1086. doi: 10.1002/admt.202101709
doi: 10.1021/acsami.5b11445 127. Hardin JO, Ober TJ, Valentine AD, Lewis JA. Microfluidic
116. Boyd DA, Shields AR, Howell PB, Ligler FS. Design and printheads for multimaterial 3D printing of viscoelastic
fabrication of uniquely shaped thiol–ene microfibers using inks. Adv Mater, 2015;27(21):3279-3284.
a two-stage hydrodynamic focusing design. Lab Chip. doi: 10.1002/adma.201500222
2013;13:3105-3110. 128. Zhang L, Fu L, Zhang X, Chen L, Cai Q, Yang X.
doi: 10.1039/c3lc50413a Hierarchical and heterogeneous hydrogel system as
117. Kobayashi A, Yamakoshi K, Yajima Y, Utoh R, Yamada M, a promising strategy for diversified interfacial tissue
Seki M. Preparation of stripe-patterned heterogeneous regeneration. Biomater Sci. 2021;9(5):1547-1573.
hydrogel sheets using micro fluidic devices for high-density doi: 10.1039/D0BM01595D
coculture of hepatocytes and fibroblasts. J Biosci Bioeng. 129. Chai N, Zhang J, Zhang Q, et al. Construction of 3D
2013;116(6):761-767. printed constructs based on microfluidic microgel for bone
doi: 10.1016/j.jbiosc.2013.05.034 regeneration. Compos Part B Eng. 2021;223(June):109100.
118. Gursoy A, Iranshahi K, Wei K, et al. Facile fabrication of doi: 10.1016/j.compositesb.2021.109100
microfluidic chips for 3D hydrodynamic focusing and wet 130. Kamperman T, Henke S, van den Berg A, et al. Single cell
spinning of polymeric fibers. Polymers (Basel). 2020;12(3): microgel based modular bioinks for uncoupled cellular
1-13. micro- and macroenvironments. Adv Healthc Mater.
doi: 10.3390/polym12030633 2017;6(3):1600913.
119. Attalla R, Ling C, Selvaganapathy P. Fabrication and doi: 10.1002/adhm.201600913
characterization of gels with integrated channels using 3D 131. Kim B, Kim I, Choi W, Kim SW, Kim J, Lim
printing with microfluidic nozzle for tissue engineering G. Fabrication of cell-encapsulated alginate
applications. Biomed Microdevices. 2016;18(1):17. microfiber scaffold using microfluidic channel.
doi: 10.1007/s10544-016-0042-6 J Manuf Sci Eng. 2008;130(2):0210161-0210166.
120. Wei D, Sun J, Bolderson J, et al. Continuous fabrication doi: 10.1115/1.2898576
and assembly of spatial cell-laden fibers for a tissue-like 132. Yao K, Li W, Li K, et al. Simple fabrication of multicomponent
construct via a photolithographic-based microfluidic chip. heterogeneous fibers for cell co-culture via microfluidic
ACS Appl Mater Interfaces. 2017;9:14606-14617. spinning. Macromol Biosci. 2020;20(3):1900395.
doi: 10.1021/acsami.7b00078 doi: 10.1002/mabi.201900395
121. Pi Q, Maharjan S, Yan X, et al. Digitally tunable microfluidic 133. Oh J, Kim K, Won SW, et al. Microfluidic fabrication of
bioprinting of multilayered cannular tissues. Adv Mater. cell adhesive chitosan microtubes. Biomed Microdevices.
2018;30(43):1-10. 2013;15(3):465-472.
doi: 10.1002/adma.201706913 doi: 10.1007/s10544-013-9746-z
122. Xiao Y, Yang C, Zhai X, et al. Bioinspired tough and strong 134. Novosel EC, Kleinhans C, Kluger PJ. Vascularization is the
fibers with hierarchical core–shell structure. Adv Mater key challenge in tissue engineering. Adv Drug Deliv Rev.
Interfaces. 2023;10(2):2201962. 2011;63(4-5):300-311.
doi: 10.1002/admi.202201962 doi: 10.1016/j.addr.2011.03.004
123. Colosi C, Shin SR, Manoharan V, et al. Microfluidic 135. Cheng Y, Zheng F, Lu J, et al. Bioinspired
bioprinting of heterogeneous 3D tissue constructs using multicompartmental microfibers from microfluidics.
low-viscosity bioink. Adv Mater, 2016;28(4):677-684. Adv Mater, 2014;26(30):5184-5190.
doi: 10.1002/adma.201503310 doi: 10.1002/adma.201400798
124. Feng F, He J, Li J, Mao M, Li D. Multicomponent bioprinting 136. Cheng J, Jun Y, Qin J, Lee S-H. Electrospinning versus
of heterogeneous hydrogel constructs based on microfluidic microfluidic spinning of functional fibers for biomedical
printheads. Int JBioprint. 2019;5(2):39-48. applications. Biomaterials. 2017;114:121-143.
doi: 10.18063/ijb.v5i2.202 doi: 10.1016/j.biomaterials.2016.10.040
125. Miri AK, Nieto D, Iglesias L, et al. Microfluidics-enabled 137. Jun Y, Kang E, Chae S, Lee S-H. Microfluidic spinning of
multimaterial maskless stereolithographic bioprinting. Adv micro- and nano-scale fibers for tissue engineering. Lab
Mater. 2018;30(27):1-9. Chip. 2014;14(13):2145-2160.
doi: 10.1002/adma.201800242 doi: 10.1039/c3lc51414e
Volume 10 Issue 1 (2024) 70 https://doi.org/10.36922/ijb.1404

