Page 75 - IJB-10-1
P. 75
International Journal of Bioprinting Microfluidic-assisted 3D bioprinting
44. Mader M, Rein C, Konrat E, et al. 2021, Fused deposition 56. Sochol RD, Sweet E, Glick CC, et al. 3D printed microfluidic
modeling of microfluidic chips in transparent polystyrene. circuitry via multijet-based additive manufacturing. Lab
Micromachines, 12(11):1348. Chip. 2016;16(4):668-678.
doi: 10.3390/mi12111348 doi: 10.1039/c5lc01389e
45. Kara A, Vassiliadou A, Ongoren B, et al. Engineering 57. Layani M, Wang X, Magdassi S. Novel materials for 3D printing
3d printed microfluidic chips for the fabrication of by photopolymerization. Adv Mater. 2018;30(41):1706344.
nanomedicines. Pharmaceutics. 2021;13(12):1-17. doi: 10.1002/adma.201706344
doi: 10.3390/pharmaceutics13122134
58. Lu Y, Mapili G, Suhali G, Chen S, Roy K. A digital micro-
46. Ching T, Li Y, Karyappa R, Ohno A. Fabrication of integrated mirror device-based system for the microfabrication of
microfluidic devices by direct ink writing (DIW) 3D complex, spatially patterned tissue. J Biomed Mater Res.
printing. Sensors Actuators, B Chem. 2019;297(December 2006;77(2):396-405.
2018):126609. doi: 10.1002/jbm.a.30601
doi: 10.1016/j.snb.2019.05.086
59. Männel MJ, Selzer L, Bernhardt R, et al. Optimizing process
47. Karyappa R, Ching T, Hashimoto M. Embedded ink writing parameters in commercial micro- stereolithography for
(EIW) of polysiloxane inks. ACS Appl Mater Interfaces. forming emulsions and polymer microparticles in nonplanar
2020;12(20):23565-23575. microfluidic devices. Adv Mater Technol. 2019;1800408:
doi: 10.1021/acsami.0c03011 1-10.
doi: 10.1002/admt.201800408
48. Childs EH, Latchman AV, Lamont AC, Hubbard J.
Additive assembly for polyjet-based multi-material 3D 60. Qin D, Xia Y, Whitesides GM. Rapid prototyping of
printed microfluidics. J Microelectromech Syst. 2020;29(5): complex structures with feature sizes larger than 20 μm.
1094-1096. Adv Mater. 1996;8(11):917-919.
doi: 10.1109/JMEMS.2020.3003858 doi: 10.1002/adma.19960081110
49. Walczak R, Adamski K. Inkjet 3D printing of microfluidic 61. Bertsch A, Heimgartner S, Cousseau P, Renauda P. Static
structures - On the selection of the printer towards printing micromixers based on large-scale industrial mixer geometry.
your own microfluidic chips. J. Micromech Microeng. Lab Chip. 2001;1(1):56-60.
2015;25(8):085013. doi: 10.1039/b103848f
doi: 10.1088/0960-1317/25/8/085013 62. Morimoto Y, Kiyosawa M, Takeuchi S. Three-dimensional
50. Hwang Y, Paydar OH, Candler RN. 3D printed molds for printed microfluidic modules for design changeable
non-planar PDMS microfluidic channels. Sensors Actuators, coaxial microfluidic devices. Sens Actuators B Chem.
A Phys. 2015;226:137-142. 2018;274(July):491-500.
doi: 10.1016/j.sna.2015.02.028 doi: 10.1016/j.snb.2018.07.151
51. King PH, Jones G, Morgan H, de Planquea MRR, Zauner 63. Costantini M, Testa S, Fornetti E, et al. Biofabricating
K-P. Interdroplet bilayer arrays in millifluidic droplet traps murine and human myo-substitutes for rapid volumetric
from 3D-printed moulds. Lab Chip. 2014;14(14):722-729. muscle loss restoration. EMBO Mol Med. 2021;13(3):1-17.
doi: 10.1039/c3lc51072g doi: 10.15252/emmm.202012778
52. Glick CC, Srimongkol MT, Schwartz AJ, et al. Rapid assembly 64. Li W, Yao K, Tian L, Xue C, Zhang X, Gao X. 3D printing
of multilayer microfluidic structures via 3D-printed transfer of heterogeneous microfibers with multi-hollow structure
molding and bonding. Microsyst Nanoeng. 2016;2(1):16063. via microfluidic spinning. J Tissue Eng Regen Med.
doi: 10.1038/micronano.2016.63 2022;16(10):913-922.
doi: 10.1002/term.3339
53. Vijayan S, Parthiban P, Hashimoto M. Evaluation of lateral
and vertical dimensions of micromolds fabricated by a 65. Maruo S, Nakamura O, Kawata S. Three-dimensional
polyjet printer. Micromachines. 2021;12(3):1-13. microfabrication with two-photon-absorbed
TM
doi: 10.3390/mi12030302 photopolymerization. Opt Lett. 1997;22(2):132-134.
doi: 10.1364/OL.22.000132
54. Anderson KB, Lockwood SY, Martin RS, et al. A 3D printed
fluidic device that enables integrated features. Anal Chem. 66. Faraji Rad Z, Prewett PD, Davies GJ. High-resolution two-
2013;85(12):5622-5626. photon polymerization: the most versatile technique for
doi: 10.1021/ac4009594 the fabrication of microneedle arrays. Microsyst Nanoeng.
55. Chen S, He Z, Choi S, Novosselov IV. Characterization 2021;7(1):71.
of inkjet-printed digital microfluidics devices. Sensors. doi: 10.1038/s41378-021-00298-3
2021;21(9):3064. 67. Fornell A, Söderbäck P, Liu Z, De Albuquerque Moreira M,
doi: 10.3390/s21093064 Tenje M. Fabrication of silicon microfluidic chips for acoustic
Volume 10 Issue 1 (2024) 67 https://doi.org/10.36922/ijb.1404

