Page 75 - IJB-10-1
        P. 75
     International Journal of Bioprinting                                     Microfluidic-assisted 3D bioprinting
            44.  Mader M, Rein C, Konrat E, et al. 2021, Fused deposition   56.  Sochol RD, Sweet E, Glick CC, et al. 3D printed microfluidic
               modeling of microfluidic chips in transparent polystyrene.   circuitry via multijet-based additive manufacturing.  Lab
               Micromachines, 12(11):1348.                        Chip. 2016;16(4):668-678.
               doi: 10.3390/mi12111348                            doi: 10.1039/c5lc01389e
            45.  Kara A, Vassiliadou A, Ongoren B, et al.  Engineering   57.  Layani M, Wang X, Magdassi S. Novel materials for 3D printing
               3d printed microfluidic  chips for  the fabrication of   by photopolymerization. Adv Mater. 2018;30(41):1706344.
               nanomedicines. Pharmaceutics. 2021;13(12):1-17.     doi: 10.1002/adma.201706344
               doi: 10.3390/pharmaceutics13122134
                                                               58.  Lu Y, Mapili G, Suhali G, Chen S, Roy K. A digital micro-
            46.  Ching T, Li Y, Karyappa R, Ohno A. Fabrication of integrated   mirror device-based system for the microfabrication of
               microfluidic  devices by direct ink writing (DIW) 3D   complex, spatially patterned tissue.  J Biomed Mater Res.
               printing.  Sensors Actuators, B Chem.  2019;297(December   2006;77(2):396-405.
               2018):126609.                                      doi: 10.1002/jbm.a.30601
               doi: 10.1016/j.snb.2019.05.086
                                                               59.  Männel MJ, Selzer L, Bernhardt R, et al. Optimizing process
            47.  Karyappa R, Ching T, Hashimoto M. Embedded ink writing   parameters in commercial micro- stereolithography for
               (EIW) of polysiloxane inks.  ACS  Appl  Mater  Interfaces.   forming emulsions and polymer microparticles in nonplanar
               2020;12(20):23565-23575.                           microfluidic devices.  Adv Mater Technol.  2019;1800408:
               doi: 10.1021/acsami.0c03011                        1-10.
                                                                  doi: 10.1002/admt.201800408
            48.  Childs EH, Latchman AV, Lamont AC, Hubbard J.
               Additive assembly for polyjet-based multi-material 3D   60.  Qin D, Xia Y, Whitesides GM. Rapid prototyping of
               printed microfluidics.  J Microelectromech Syst.  2020;29(5):   complex structures with feature sizes larger than 20 μm.
               1094-1096.                                         Adv Mater. 1996;8(11):917-919.
               doi: 10.1109/JMEMS.2020.3003858                    doi: 10.1002/adma.19960081110
            49.  Walczak R, Adamski K. Inkjet 3D printing of microfluidic   61.  Bertsch A, Heimgartner S, Cousseau P, Renauda P. Static
               structures - On the selection of the printer towards printing   micromixers based on large-scale industrial mixer geometry.
               your  own  microfluidic  chips.  J. Micromech Microeng.   Lab Chip. 2001;1(1):56-60.
               2015;25(8):085013.                                 doi: 10.1039/b103848f
               doi: 10.1088/0960-1317/25/8/085013              62.  Morimoto Y, Kiyosawa M, Takeuchi S. Three-dimensional
            50.  Hwang Y, Paydar OH, Candler RN. 3D printed molds for   printed microfluidic modules for design changeable
               non-planar PDMS microfluidic channels. Sensors Actuators,   coaxial microfluidic devices.  Sens Actuators B Chem.
               A Phys. 2015;226:137-142.                          2018;274(July):491-500.
               doi: 10.1016/j.sna.2015.02.028                     doi: 10.1016/j.snb.2018.07.151
            51.  King PH, Jones G, Morgan H, de Planquea MRR, Zauner   63.  Costantini M, Testa S, Fornetti E, et al.  Biofabricating
               K-P. Interdroplet bilayer arrays in millifluidic droplet traps   murine and human myo-substitutes for rapid volumetric
               from 3D-printed moulds. Lab Chip. 2014;14(14):722-729.  muscle loss restoration. EMBO Mol Med. 2021;13(3):1-17.
               doi: 10.1039/c3lc51072g                            doi: 10.15252/emmm.202012778
            52.  Glick CC, Srimongkol MT, Schwartz AJ, et al. Rapid assembly   64.  Li W, Yao K, Tian L, Xue C, Zhang X, Gao X. 3D printing
               of multilayer microfluidic structures via 3D-printed transfer   of heterogeneous microfibers with multi-hollow structure
               molding and bonding. Microsyst Nanoeng. 2016;2(1):16063.  via microfluidic spinning.  J Tissue Eng Regen Med.
               doi: 10.1038/micronano.2016.63                     2022;16(10):913-922.
                                                                  doi: 10.1002/term.3339
            53.  Vijayan S, Parthiban P, Hashimoto M. Evaluation of lateral
               and  vertical  dimensions  of  micromolds  fabricated  by  a   65.  Maruo S, Nakamura O, Kawata S. Three-dimensional
               polyjet  printer. Micromachines. 2021;12(3):1-13.  microfabrication  with      two-photon-absorbed
                    TM
               doi: 10.3390/mi12030302                            photopolymerization. Opt Lett. 1997;22(2):132-134.
                                                                  doi: 10.1364/OL.22.000132
            54.  Anderson KB, Lockwood SY, Martin RS, et al. A 3D printed
               fluidic device that enables integrated features. Anal Chem.   66.  Faraji Rad Z, Prewett PD, Davies GJ. High-resolution two-
               2013;85(12):5622-5626.                             photon polymerization: the most versatile technique for
               doi: 10.1021/ac4009594                             the fabrication of microneedle arrays.  Microsyst Nanoeng.
            55.  Chen S, He Z, Choi S, Novosselov IV. Characterization   2021;7(1):71.
               of inkjet-printed digital microfluidics devices.  Sensors.      doi: 10.1038/s41378-021-00298-3
               2021;21(9):3064.                                67.  Fornell A, Söderbäck P, Liu Z, De Albuquerque Moreira M,
               doi: 10.3390/s21093064                             Tenje M. Fabrication of silicon microfluidic chips for acoustic
            Volume 10 Issue 1 (2024)                        67                          https://doi.org/10.36922/ijb.1404
     	
