Page 36 - IJB-2-1
P. 36
Preventing bacterial adhesion on scaffolds for bone tissue engineering
ty and metastability. Langmuir, vol.20(9): 3517–3519. posited by magnetron sputtering at oblique incidence:
http://dx.doi.org/10.1021/la036369u From compact to columnar microstructures. Nanotech-
54. Su Y, B Ji and Hwang K C, 2010, Nature’s design of nology, vol.24(4): 045604.
hierarchical superhydrophobic surfaces of a water strid- http://dx.doi.org/10.1088/0957-4484/24/4/045604
er for low adhesion and low-energy dissipation. Lang- 65. García-Martín J M, Álvarez R, Romero-Gómez P, et al.,
muir, vol.26(24): 18926–18937. 2010, Tilt angle control of nanocolumns grown by
http://dx.doi.org/10.1021/la103442b glancing angle sputtering at variable argon pressures.
55. Bhushan B and Jung Y C, 2011, Natural and biomimetic Applied Physics Letters, vol.97(17): 173103.
artificial surfaces for superhydrophobicity, self-cleaning, http://dx.doi.org/10.1063/1.3506502
low adhesion, and drag reduction. Progress in Materials 66. Liu D M, 1996, Fabrication and characterization of
Science, vol.56(1): 1–108. porous hydroxyapatite granules. Biomaterials, vol.17(20):
http://dx.doi.org/10.1016/j.pmatsci.2010.04.003 1955–1957.
56. Guo Z, Liu W and Su B L, 2011, Superhydrophobic http://dx.doi.org/10.1016/0142-9612(95)00301-0
surfaces: From natural to biomimetic to functional. 67. Padilla S, Román J and Vallet-Regí M, 2002, Synthesis
Journal of Colloid and Interface Science, vol.353(2): of porous hydroxyapatite by combination of gelcasting
335–355. and foams burn out methods. Journal Materials Science:
http://dx.doi.org/10.1016/j.jcis.2010.08.047 Materials in Medicine. vol.13(12): 1193–1197.
57. Webb H K, Hasan J, Truong V K, et al., 2011, Nature http://dx.doi.org/10.1023/A:1021162626006
inspired structured surfaces for biomedical applications. 68. Padilla S, Sánchez-Salcedo S and Vallet-Regí M, 2007,
Current Medicinal Chemistry, vol.18(22): 3367–3375. Bioactive glass as precursor of designed-architecture
http://dx.doi.org/10.2174/092986711796504673 scaffolds for tissue engineering. Journal Biomedical
58. Gao X, Yan X, Yao X, et al., 2007, The dry-style anti- Materials Research, vol.81(1): 224–232.
fogging properties of mosquito compound eyes and ar- http://dx.doi.org/10.1002/jbm.a.30934
tificial analogues prepared by soft lithography. Ad- 69. Slosarczyk A J, 1999, Porous hydroxyapatite ceramics.
vanced Materials, vol.19(17): 2213–2217. Journal Materials Science: Materials in Medicine,
http://dx.doi.org/10.1002/adma.200601946 vol.18(14): 1163–1165.
59. Bhushan B, Jung Y C, Niemitz A, et al., 2009, Lo- http://dx.doi.org/10.1023/A:1006677806537
tus-like biomimetic hierarchical structures developed by 70. Al Ruhaimi K A, 2001, Bone graft substitutes: Acom-
the self-assembly of tubular plant waxes. Langmuir, parative qualitative histologic review of current osteo-
vol.25(3): 1659–1666. conductive grafting materials. International Journal of
http://dx.doi.org/10.1021/la802491k Oral & Maxillofacial Implants, vol.16(1): 105–114.
60. Koch K, Bhushan B, Yong C J, et al., 2009, Fabrication 71. Sánchez-Salcedo S, Balas F, Izquierdo-Barba I, et al.,
of artificial lotus leaves and significance of hierarchical 2009, In vitro structural changes in porous HA/beta-TCP
structure for superhydrophobicity and low adhesion. scaffolds under simulated body fluid. Acta Biomateria-
Soft Matter, vol.5(7): 1386–1393. lia, vol.5(7): 2738–2751.
http://dx.doi.org/10.1039/B818940D http://dx.doi.org/10.1016/j.actbio.2009.03.025
61. Ploux L, Anselme K, Dirani A, et al., 2009, Opposite 72. Deville S, Saiz E, Nalla R K, et al., 2006, Freezing as a
responses of cells and bacteria to micro/nanopatterned path to build complex composites, Science, vol.311(5760):
surfaces prepared by pulsed plasma polymerization and 515–518.
UV-irradiation. Langmuir, vol.25(14): 8161–8169. http://dx.doi.org/10.1126/science.1120937
http://dx.doi.org/10.1021/la900457f 73. Locs J, Zalite V, Berzina-Cimdina L, et al., 2013, Am-
62. Mei S, Wang H, Wang W, et al., 2014, Antibacterial ef- monium hydrogen carbonate provided viscous slurry
fects and biocompatibility of titanium surfaces with foaming — a novel technology for the preparation of
graded silver incorporation in titania nanotubes. Bioma- porous ceramics. Journal of the European Ceramic So-
terials, vol.35(14): 4255–4265. ciety, vol.33(15–16): 3437–3443.
http://dx.doi.org/10.1016/j.biomaterials.2014.02.005 http://dx.doi.org/10.1016/j.jeurceramsoc.2013.06.010
63. Decuzzi P and Ferrari M, 2010, Modulating cellular ad- 74. Sánchez-Salcedo S, Werner J and Vallet-Regí M, 2008,
hesion through nanotopography. Biomaterials, vol.31(1): Hierarchical pore structure of calcium phosphate scaf-
173–179. folds by combination of the gel casting and multiple tape
http://dx.doi.org/10.1016/j.biomaterials.2009.09.018 casting methods. Acta Biomaterialia, vol.4: 913–922.
64. Alvarez R, García-Martín J M, Macías-Montero M, et http://dx.doi.org/10.1016/j.actbio.2008.02.005
al., 2013, Growth regimes of porous gold thin films de- 75. Hutmacher D W, Sittinger M and Risbud M V, 2004,
32 International Journal of Bioprinting (2016)–Volume 2, Issue 1

