Page 36 - IJB-2-1
P. 36

Preventing bacterial adhesion on scaffolds for bone tissue engineering

                 ty and metastability. Langmuir, vol.20(9): 3517–3519.   posited by magnetron sputtering at  oblique incidence:
                 http://dx.doi.org/10.1021/la036369u                From compact to columnar microstructures.  Nanotech-
              54.  Su Y, B  Ji  and Hwang K  C,  2010, Nature’s design  of   nology, vol.24(4): 045604.
                 hierarchical superhydrophobic surfaces of a water strid-  http://dx.doi.org/10.1088/0957-4484/24/4/045604
                 er for low adhesion and low-energy dissipation.  Lang-  65.  García-Martín J M, Álvarez R, Romero-Gómez P, et al.,
                 muir, vol.26(24): 18926–18937.                     2010, Tilt angle control of  nanocolumns grown by
                 http://dx.doi.org/10.1021/la103442b                glancing  angle  sputtering  at variable argon  pressures.
              55.  Bhushan B and Jung Y C, 2011, Natural and biomimetic   Applied Physics Letters, vol.97(17): 173103.
                 artificial surfaces for superhydrophobicity, self-cleaning,   http://dx.doi.org/10.1063/1.3506502
                 low adhesion, and drag reduction. Progress in Materials   66.  Liu  D  M, 1996,  Fabrication  and characterization  of
                 Science, vol.56(1): 1–108.                         porous hydroxyapatite granules. Biomaterials, vol.17(20):
                 http://dx.doi.org/10.1016/j.pmatsci.2010.04.003    1955–1957.
              56.  Guo Z, Liu W and  Su B L, 2011, Superhydrophobic   http://dx.doi.org/10.1016/0142-9612(95)00301-0
                 surfaces:  From natural to  biomimetic to  functional.   67.  Padilla S, Román J and Vallet-Regí M, 2002, Synthesis
                 Journal of  Colloid and Interface Science, vol.353(2):   of porous hydroxyapatite by combination of gelcasting
                 335–355.                                           and foams burn out methods. Journal Materials Science:
                 http://dx.doi.org/10.1016/j.jcis.2010.08.047       Materials in Medicine. vol.13(12): 1193–1197.
              57.  Webb H K, Hasan J, Truong V K, et al., 2011, Nature   http://dx.doi.org/10.1023/A:1021162626006
                 inspired structured surfaces for biomedical applications.   68.  Padilla S, Sánchez-Salcedo S and Vallet-Regí M, 2007,
                 Current Medicinal Chemistry, vol.18(22): 3367–3375.   Bioactive glass as precursor of designed-architecture
                 http://dx.doi.org/10.2174/092986711796504673       scaffolds for tissue engineering.  Journal Biomedical
              58.  Gao X, Yan X, Yao X, et al., 2007, The dry-style anti-  Materials Research, vol.81(1): 224–232.
                 fogging properties of mosquito compound eyes and ar-  http://dx.doi.org/10.1002/jbm.a.30934
                 tificial analogues prepared  by soft lithography. Ad-  69.  Slosarczyk A J, 1999, Porous hydroxyapatite ceramics.
                 vanced Materials, vol.19(17): 2213–2217.           Journal Materials Science:  Materials in Medicine,
                 http://dx.doi.org/10.1002/adma.200601946           vol.18(14): 1163–1165.
              59.  Bhushan B, Jung Y C,  Niemitz A,  et al.,  2009, Lo-  http://dx.doi.org/10.1023/A:1006677806537
                 tus-like biomimetic hierarchical structures developed by   70.  Al Ruhaimi K A, 2001, Bone graft substitutes: Acom-
                 the self-assembly  of  tubular plant waxes.  Langmuir,   parative qualitative histologic review of current osteo-
                 vol.25(3): 1659–1666.                              conductive grafting materials.  International Journal of
                 http://dx.doi.org/10.1021/la802491k                Oral & Maxillofacial Implants, vol.16(1): 105–114.
              60.  Koch K, Bhushan B, Yong C J, et al., 2009, Fabrication   71.  Sánchez-Salcedo  S, Balas  F, Izquierdo-Barba I,  et al.,
                 of artificial lotus leaves and significance of hierarchical   2009, In vitro structural changes in porous HA/beta-TCP
                 structure for  superhydrophobicity and low adhesion.   scaffolds under simulated body fluid. Acta Biomateria-
                 Soft Matter, vol.5(7): 1386–1393.                  lia, vol.5(7): 2738–2751.
                 http://dx.doi.org/10.1039/B818940D                 http://dx.doi.org/10.1016/j.actbio.2009.03.025
              61.  Ploux  L, Anselme K, Dirani A,  et al.,  2009, Opposite   72.  Deville S, Saiz E, Nalla R K, et al., 2006, Freezing as a
                 responses of cells and  bacteria to  micro/nanopatterned   path to build complex composites, Science, vol.311(5760):
                 surfaces prepared by pulsed plasma polymerization and   515–518.
                 UV-irradiation. Langmuir, vol.25(14): 8161–8169.   http://dx.doi.org/10.1126/science.1120937
                 http://dx.doi.org/10.1021/la900457f            73.  Locs J, Zalite V, Berzina-Cimdina L, et al., 2013, Am-
              62.  Mei S, Wang H, Wang W, et al., 2014, Antibacterial ef-  monium hydrogen carbonate provided viscous slurry
                 fects and  biocompatibility  of titanium surfaces  with   foaming  —  a  novel technology for the  preparation of
                 graded silver incorporation in titania nanotubes. Bioma-  porous ceramics. Journal of the European Ceramic So-
                 terials, vol.35(14): 4255–4265.                    ciety, vol.33(15–16): 3437–3443.
                 http://dx.doi.org/10.1016/j.biomaterials.2014.02.005   http://dx.doi.org/10.1016/j.jeurceramsoc.2013.06.010
              63.  Decuzzi P and Ferrari M, 2010, Modulating cellular ad-  74.  Sánchez-Salcedo S, Werner J and Vallet-Regí M, 2008,
                 hesion through nanotopography. Biomaterials, vol.31(1):   Hierarchical pore  structure  of  calcium  phosphate scaf-
                 173–179.                                           folds by combination of the gel casting and multiple tape
                 http://dx.doi.org/10.1016/j.biomaterials.2009.09.018   casting methods. Acta Biomaterialia, vol.4: 913–922.
              64.  Alvarez  R, García-Martín  J M, Macías-Montero M,  et   http://dx.doi.org/10.1016/j.actbio.2008.02.005
                 al., 2013, Growth regimes of porous gold thin films de-  75.  Hutmacher D W,  Sittinger  M and Risbud M V, 2004,
            32                          International Journal of Bioprinting (2016)–Volume 2, Issue 1
   31   32   33   34   35   36   37   38   39   40   41