Page 34 - IJB-2-1
P. 34
Preventing bacterial adhesion on scaffolds for bone tissue engineering
http://dx.doi.org/10.1529/biophysj.105.059428 http://dx.doi.org/10.1016/j.biomaterials.2014.01.080
9. Chen S, Li L, Zhao, et al., 2010, Surface hydration: 20. Tiraferri A, Vecitis C D and Elimelech M, 2011, Cova-
Principles and applications toward low-fouling/non- lent binding of single-walled carbon nanotubes to po-
fouling biomaterials. Polymer, vol.51(23): 5283–5293. lyamide membranes for antimicrobial surface properties.
http://dx.doi.org/10.1016/j.polymer.2010.08.022 ACS Applied Materials and Interfaces, vol.3(8): 2869–
10. Ostuni E, Chapman R G, Holmlin R E, et al., 2001, A 2877.
survey of structure-property relationships of surfaces that http://dx.doi.org/10.1021/am200536p
resist the adsorption of protein. Langmuir, vol.17(18): 21. Knetsch M L W and Koole L H, 2011, New strategies in
5605–5020. the development of antimicrobial coatings: The example
http://dx.doi.org/10.1021/la010384m of increasing usage of silver and silver nanoparticles.
11. Tanaka M, Sato K, Kitakami E, et al., 2015, Design of Polymers, vol.3(1): 340–366.
biocompatible and biodegradable polymers based on in- http://dx.doi.org/10.3390/polym3010340
termediate water concept. Polymer Journal, vol.47: 22. Kelly P J, Lia H, Whitehead K A, et al., 2009, A study
114–121. of the antimicrobial and tribological properties of
http://dx.doi.org/10.1038/pj.2014.129 TiN/Ag nanocomposite coatings. Surface and Coatings
12. Chung K K, Schumacher J F, Sampson E M, et al., 2007, Technology, vol.204(6–7): 1137–1140.
Impact of engineered surface microtopography on bio- http://dx.doi.org/10.1016/j.surfcoat.2009.05.012
film formation of Staphylococcus aureus. Biointerphas- 23. Sengstock C, Lopian M, Motemani Y, et al., 2014,
es, vol.2(2): 89–94. Structure-related antibacterial activity of a titanium na-
http://dx.doi.org/10.1116/1.2751405 nostructured surface fabricated by glancing angle sputter
13. Ivanova E P, Hasan J, Webb H K, et al., 2012, Natural deposition. Nanotechnology, vol.25(19): 195101–195702.
bactericidal surfaces: Mechanical rupture of Pseudo- http://dx.doi.org/10.1088/0957-4484/25/19/195101
monas aeruginosa by cicada wings. Small, vol.8(16): 24. Izquierdo-Barba I, García-Martín J M, Álvarez R, et al.,
2489–2494. 2015, Nanocolumnar coatings with selective behavior
http://dx.doi.org/10.1002/smll.201200528 towards osteoblast and Staphylococcus aureus prolifera-
14. Bazaka, K, Crawford R J and Ivanova E P, 2011, Do tion. Acta Biomaterialia, vol.15: 20–28.
bacteria differentiate between degrees of nanoscale sur- http://dx.doi.org/10.1016/j.actbio.2014.12.023
face roughness? Biotechnology Journal, vol.6(9): 1103– 25. Anselme K, 2000, Osteoblast adhesion on biomaterials.
1114. Biomaterials, vol.21(7): 667–681.
http://dx.doi.org/10.1002/biot.201100027 http://dx.doi.org/10.1016/S0142-9612(99)00242-2
15. Truonga V K, Lapovok R, Estrin Y S, et al., 2010, The 26. Hutmacher D W, 2000, Scaffolds in tissue engineering
influence of nano-scale surface roughness on bacterial bone and cartilage. Biomaterials, vol.21(24): 2529–2543.
adhesion to ultrafine-grained titanium. Biomaterials, http://dx.doi.org/10.1016/S0142-9612(00)00121-6
vol.31(13): 3674–3683. 27. Hollister S J, 2009, Scaffold design and manufacturing:
http://dx.doi.org/10.1016/j.biomaterials.2010.01.071 from concept to clinic. Advanced Materials, vol. 21(32–33),
16. Campoccia D, Montanaro L and Arciola C R, 2013, A 3330–3342.
review of the biomaterials technologies for infection- http://dx.doi.org/10.1002/adma.200802977
resistant surfaces. Biomaterials, vol.34(34): 8533–5854. 28. Cheng G, Zhang Z, Chen S, et al., 2007, Inhibition of
http://dx.doi.org/10.1016/j.biomaterials.2013.07.089 bacterial adhesion and biofilm formation on zwitterionic
17. Puckett S D, Taylor E, Raimondo T, et al., 2010, The surfaces. Biomaterials, vol.28(29): 4192–4199.
relationship between the nanostructure of titanium sur- http://dx.doi.org/10.1016/j.biomaterials.2007.05.041
faces and bacterial attachment. Biomaterials, vol.31(4): 29. Cheng G, Xue H, Zhang Z, et al., 2008, A switchable
706–713. biocompatible polymer surface with self-sterilizing and
http://dx.doi.org/10.1016/j.biomaterials.2009.09.081 nonfouling capabilities. Angewandte Chemie Interna-
18. Díaz C, Schilardi P L, Salvarezza R C, et al., 2007, Na- tional Edition, vol.120(46): 8963–8966.
no/microscale order affects the early stages of biofilm http://dx.doi.org/10.1002/ange.200803570
formation on metal surface. Langmuir, vol.23(22): 30. Cheng G, Li G, Xue H, et al., 2009, Zwitterionic car-
11206–11210. boxybetaine polymer surfaces and their resistance to
http://dx.doi.org/10.1021/la700650q long-term biofilm formation. Biomaterials, vol.30(28):
19. Jahed Z, Lin P, Seo B B, et al., 2014, Responses of Sta- 5234–5240.
phylococcus aureus bacterial cells to nanocrystalline http://dx.doi.org/10.1016/j.biomaterials.2009.05.058
nickel nanostructures. Biomaterials, vol.35(14): 4249–4254. 31. Jiang S and Cao Z, 2010, Ultralow-fouling, functiona-
30 International Journal of Bioprinting (2016)–Volume 2, Issue 1

