Page 34 - IJB-2-1
P. 34

Preventing bacterial adhesion on scaffolds for bone tissue engineering

                 http://dx.doi.org/10.1529/biophysj.105.059428      http://dx.doi.org/10.1016/j.biomaterials.2014.01.080
              9.   Chen S, Li L, Zhao,  et al.,  2010, Surface hydration:   20.  Tiraferri A, Vecitis C D and Elimelech M, 2011, Cova-
                 Principles and applications toward low-fouling/non-  lent binding of single-walled  carbon  nanotubes to po-
                 fouling biomaterials. Polymer, vol.51(23): 5283–5293.   lyamide membranes for antimicrobial surface properties.
                 http://dx.doi.org/10.1016/j.polymer.2010.08.022    ACS Applied Materials and Interfaces, vol.3(8): 2869–
              10.  Ostuni E, Chapman R G, Holmlin R E, et al., 2001, A   2877.
                 survey of structure-property relationships of surfaces that   http://dx.doi.org/10.1021/am200536p
                 resist the adsorption  of protein.  Langmuir, vol.17(18):   21.  Knetsch M L W and Koole L H, 2011, New strategies in
                 5605–5020.                                         the development of antimicrobial coatings: The example
                 http://dx.doi.org/10.1021/la010384m                of increasing  usage of  silver and silver nanoparticles.
              11.  Tanaka M, Sato K, Kitakami E, et al., 2015, Design of   Polymers, vol.3(1): 340–366.
                 biocompatible and biodegradable polymers based on in-  http://dx.doi.org/10.3390/polym3010340
                 termediate  water  concept.  Polymer  Journal,  vol.47:   22.  Kelly P J, Lia H, Whitehead K A, et al., 2009, A study
                 114–121.                                           of the antimicrobial and  tribological properties of
                 http://dx.doi.org/10.1038/pj.2014.129              TiN/Ag nanocomposite coatings. Surface and Coatings
              12.  Chung K K, Schumacher J F, Sampson E M, et al., 2007,   Technology, vol.204(6–7): 1137–1140.
                 Impact of engineered surface microtopography on bio-  http://dx.doi.org/10.1016/j.surfcoat.2009.05.012
                 film formation of Staphylococcus aureus. Biointerphas-  23.  Sengstock  C,  Lopian M, Motemani  Y,  et al.,  2014,
                 es, vol.2(2): 89–94.                               Structure-related antibacterial activity of a titanium na-
                 http://dx.doi.org/10.1116/1.2751405                nostructured surface fabricated by glancing angle sputter
              13.  Ivanova E P, Hasan J, Webb H K, et al., 2012, Natural   deposition. Nanotechnology, vol.25(19): 195101–195702.
                 bactericidal surfaces:  Mechanical rupture of  Pseudo-  http://dx.doi.org/10.1088/0957-4484/25/19/195101
                 monas aeruginosa  by  cicada wings.  Small, vol.8(16):   24.  Izquierdo-Barba I, García-Martín J M, Álvarez R, et al.,
                 2489–2494.                                         2015,  Nanocolumnar coatings with selective  behavior
                 http://dx.doi.org/10.1002/smll.201200528           towards osteoblast and Staphylococcus aureus prolifera-
              14.  Bazaka, K, Crawford  R J and Ivanova E  P, 2011, Do   tion. Acta Biomaterialia, vol.15: 20–28.
                 bacteria differentiate between degrees of nanoscale sur-  http://dx.doi.org/10.1016/j.actbio.2014.12.023
                 face roughness? Biotechnology Journal, vol.6(9): 1103–   25.  Anselme K, 2000, Osteoblast adhesion on biomaterials.
                 1114.                                              Biomaterials, vol.21(7): 667–681.
                 http://dx.doi.org/10.1002/biot.201100027           http://dx.doi.org/10.1016/S0142-9612(99)00242-2
              15.  Truonga V K, Lapovok R, Estrin Y S, et al., 2010, The   26.  Hutmacher D W, 2000, Scaffolds in tissue engineering
                 influence of  nano-scale surface roughness  on  bacterial   bone and cartilage. Biomaterials, vol.21(24): 2529–2543.
                 adhesion  to  ultrafine-grained  titanium.  Biomaterials,   http://dx.doi.org/10.1016/S0142-9612(00)00121-6
                 vol.31(13): 3674–3683.                         27.  Hollister S J, 2009, Scaffold design and manufacturing:
                 http://dx.doi.org/10.1016/j.biomaterials.2010.01.071   from concept to clinic. Advanced Materials, vol. 21(32–33),
              16.  Campoccia D, Montanaro L and Arciola C R, 2013, A   3330–3342.
                 review of the biomaterials technologies for infection-   http://dx.doi.org/10.1002/adma.200802977
                 resistant surfaces. Biomaterials, vol.34(34): 8533–5854.   28.  Cheng G, Zhang Z, Chen S, et al., 2007, Inhibition of
                 http://dx.doi.org/10.1016/j.biomaterials.2013.07.089   bacterial adhesion and biofilm formation on zwitterionic
              17.  Puckett S D,  Taylor  E, Raimondo  T,  et al.,  2010, The   surfaces. Biomaterials, vol.28(29): 4192–4199.
                 relationship between the nanostructure of titanium sur-  http://dx.doi.org/10.1016/j.biomaterials.2007.05.041
                 faces and bacterial attachment. Biomaterials, vol.31(4):   29.  Cheng G, Xue H, Zhang Z, et al., 2008, A switchable
                 706–713.                                           biocompatible polymer surface with self-sterilizing and
                 http://dx.doi.org/10.1016/j.biomaterials.2009.09.081   nonfouling  capabilities.  Angewandte Chemie Interna-
              18.  Díaz C, Schilardi P L, Salvarezza R C, et al., 2007, Na-  tional Edition, vol.120(46): 8963–8966.
                 no/microscale order  affects the early  stages  of biofilm   http://dx.doi.org/10.1002/ange.200803570
                 formation  on metal surface.  Langmuir, vol.23(22):   30.  Cheng G, Li G, Xue H, et al., 2009, Zwitterionic car-
                 11206–11210.                                       boxybetaine polymer surfaces and  their resistance to
                 http://dx.doi.org/10.1021/la700650q                long-term biofilm formation.  Biomaterials, vol.30(28):
              19.  Jahed Z, Lin P, Seo B B, et al., 2014, Responses of Sta-  5234–5240.
                 phylococcus aureus  bacterial cells to  nanocrystalline   http://dx.doi.org/10.1016/j.biomaterials.2009.05.058
                 nickel nanostructures. Biomaterials, vol.35(14): 4249–4254.   31.  Jiang S and Cao Z, 2010, Ultralow-fouling, functiona-
            30                          International Journal of Bioprinting (2016)–Volume 2, Issue 1
   29   30   31   32   33   34   35   36   37   38   39