Page 38 - IJB-2-1
P. 38
Preventing bacterial adhesion on scaffolds for bone tissue engineering
gelatine scaffolds by rapid prototyping for drug delivery ing & Physics, vol.19(1): 90–96.
and bone regeneration. Acta Biomaterialia, vol.15: 200– http://dx.doi.org/10.1016/S1350-4533(96)00039-2
209. 102. Kruth J-P, Mercelis P, Vaerenbergh J V, et al., 2005,
http://dx.doi.org/0.1016/j.actbio.2014.12.021 Binding mechanisms in selective laser sintering and se-
97. Shruti S, Salinas A J, Lusvardi G, et al., 2013, Meso- lective laser melting. Rapid Prototyping Journal,
porous bioactive scaffolds prepared with cerium-, gal- vol.11(1): 26–36.
lium- and zinc-containing glasses. Acta Biomaterialia, http://dx.doi.org/10.1108/13552540510573365
vol.9(1): 4836–4844. 103. Wiria F E, Leong K F, Chua C K, et al., 2007, Poly-
http://dx.doi.org/10.1016/j.actbio.2012.09.024 Ɛ-caprolactone/hydroxyapatite for tissue engineering
98. Cicuéndez M, Malmsten M, Doadrio J C, et al., 2014, scaffold fabrication via selective laser sintering. Acta
Tailoring hierarchical meso–macroporous 3D scaffolds: Biomaterialia, vol.3(1): 1–12.
From nano to macro. Journal of Materials Chemistry B, http://dx.doi.org/10.1016/j.actbio.2006.07.008
vol.2(1): 49–58. 104. Tan K H, Chua C K, Leong K F, et al., 2005, Selective
http://dx.doi.org/10.1039/C3TB21307B laser sintering of biocompatible polymers for applica-
99. Meseguer-Olmo, L, Vicente-Ortega V, Alcaraz-Baños M, tions in tissue engineering. Biomedical Materials Engi-
et al., 2013, In-vivo behavior of Si-Hydroxyapatite/po- neering, vol.15(1–2): 113−124.
lycaprolactone/DMB scaffolds fabricated by 3D printing. 105. Shuai C, Li P, Liu J, et al., 2013, Optimization of
Journal of Biomedical Materials Research A, vol.101A(7): TCP/HAP ratio for better properties of calcium phos-
2038–2048. phate scaffold via selective laser sintering. Materials
http://dx.doi.org/10.1002/jbm.a.34511 Characterization, vol.77: 23–31.
100. Riza S H, Masood S H and Wen C, 2014, Laser-assisted http://dx.doi.org/10.1016/j.matchar.2012.12.009
additive manufacturing for metallic biomedical scaffolds, 106. Lin C Y, Wirtz T, LaMarca F, et al., 2007, Structural and
Comprehensive Materials Processing, vol.10: 285–301. mechanical evaluation of a topology optimized titanium
http://doi.org/10.1016/B978-0-08-096532-1.01017-7 interbody fusion cage fabricated by selective laser
101. Berry E, Brown J M, Connell M, et al., 1997, Prelimi- melting process. Journal of Biomedical Material Re-
nary experience with medical applications of rapid pro- search, vol.83A(2): 272–279.
totyping by selective laser sintering. Medical Engineer- http://dx.doi.org/10.1002/jbm.a.31231
34 International Journal of Bioprinting (2016)–Volume 2, Issue 1

