Page 38 - IJB-2-1
P. 38

Preventing bacterial adhesion on scaffolds for bone tissue engineering

                  gelatine scaffolds by rapid prototyping for drug delivery   ing & Physics, vol.19(1): 90–96.
                  and bone regeneration. Acta Biomaterialia, vol.15: 200–   http://dx.doi.org/10.1016/S1350-4533(96)00039-2
                  209.                                          102.  Kruth J-P, Mercelis P, Vaerenbergh  J V,  et al.,  2005,
                  http://dx.doi.org/0.1016/j.actbio.2014.12.021     Binding mechanisms in selective laser sintering and se-
              97.  Shruti S, Salinas A J, Lusvardi G, et al., 2013, Meso-  lective laser melting.  Rapid  Prototyping Journal,
                  porous bioactive  scaffolds prepared with cerium-, gal-  vol.11(1): 26–36.
                  lium-  and  zinc-containing  glasses.  Acta Biomaterialia,   http://dx.doi.org/10.1108/13552540510573365
                  vol.9(1): 4836–4844.                          103.  Wiria  F  E,  Leong K  F, Chua C K,  et al., 2007, Poly-
                  http://dx.doi.org/10.1016/j.actbio.2012.09.024    Ɛ-caprolactone/hydroxyapatite for tissue engineering
              98.  Cicuéndez M, Malmsten M, Doadrio J C, et al., 2014,   scaffold  fabrication  via selective laser  sintering. Acta
                  Tailoring hierarchical meso–macroporous 3D scaffolds:   Biomaterialia, vol.3(1): 1–12.
                  From nano to macro. Journal of Materials Chemistry B,   http://dx.doi.org/10.1016/j.actbio.2006.07.008
                  vol.2(1): 49–58.                              104.  Tan K H, Chua C K, Leong K F, et al., 2005, Selective
                  http://dx.doi.org/10.1039/C3TB21307B              laser  sintering of biocompatible polymers for  applica-
              99.  Meseguer-Olmo, L, Vicente-Ortega V, Alcaraz-Baños M,   tions in tissue engineering. Biomedical Materials Engi-
                  et al., 2013, In-vivo behavior of Si-Hydroxyapatite/po-  neering, vol.15(1–2): 113−124.
                  lycaprolactone/DMB scaffolds fabricated by 3D printing.   105.  Shuai C, Li  P, Liu  J,  et al.,  2013, Optimization  of
                  Journal of Biomedical Materials Research A, vol.101A(7):   TCP/HAP  ratio  for better properties  of calcium phos-
                  2038–2048.                                        phate scaffold  via selective laser  sintering.  Materials
                  http://dx.doi.org/10.1002/jbm.a.34511             Characterization, vol.77: 23–31.
              100.  Riza S H, Masood S H and Wen C, 2014, Laser-assisted   http://dx.doi.org/10.1016/j.matchar.2012.12.009
                  additive manufacturing for metallic biomedical scaffolds,   106.  Lin C Y, Wirtz T, LaMarca F, et al., 2007, Structural and
                  Comprehensive Materials Processing, vol.10: 285–301.   mechanical evaluation of a topology optimized titanium
                  http://doi.org/10.1016/B978-0-08-096532-1.01017-7   interbody  fusion  cage  fabricated  by  selective  laser
              101.  Berry E, Brown J M, Connell M, et al., 1997, Prelimi-  melting process.  Journal of Biomedical  Material Re-
                  nary experience with medical applications of rapid pro-  search, vol.83A(2): 272–279.
                  totyping by selective laser sintering. Medical Engineer-  http://dx.doi.org/10.1002/jbm.a.31231







































            34                          International Journal of Bioprinting (2016)–Volume 2, Issue 1
   33   34   35   36   37   38   39   40   41   42   43