Page 35 - IJB-2-1
P. 35

Sandra Sánchez-Salcedo,  Montserrat Colilla, Isabel  Izquierdo-Barba,  et al.

                 lizable, and hydrolyzable zwitterionic materials and   Structure and functionalization of mesoporous bioce-
                 their derivatives for biological applications.  Advanced   ramics for bone tissue regeneration and local drug deli-
                 Materials, vol.22(9): 920–932.                     very. Philosophical Transactions of the Royal Society of
                 http://dx.doi.org/10.1002/adma.200901407           Chemistry A, vol.370(1963): 1400–1421.
              32.  Lalani R and Liu L,  2012, Electrospun zwitterionic   http://dx.doi.org/10.1098/rsta.2011.0258
                 poly(sulfobetaine methacrylate) for nonadherent,  supe-  43.  Vallet-Regí M, Balas F and Arcos D, 2007, Mesoporous
                 rabsorbent, and antimicrobial wound  dressing  applica-  materials for drug delivery. Angewandte Chemie Inter-
                 tions. Biomacromolecules, vol.13(6): 1853–1863.    national Edition, vol.46(40): 7548–7558.
                 http://dx.doi.org/10.1021/bm300345e                http://dx.doi.org/10.1002/anie.200604488
              33.  Zhang Z, Chen S, Chang Y, et al., 2006, Surface grafted   44.  Colilla M, Izquierdo-Barba I, Sánchez-Salcedo S, et al.,
                 sulfobetaine polymers via atom transfer radical polyme-  2010, Synthesis and characterization  of zwitterionic
                 rization as superlow fouling coatings. Journal of Physi-  SBA-15 nanostructured  materials.  Chemistry of  Mate-
                 cal Chemistry B, vol.110(22): 10799–10804.         rials, vol.22(23): 6459–6466.
                 http://dx.doi.org/10.1021/jp057266i                http://dx.doi.org/10.1021/cm102827y
              34.  Zhang Z, Chao T, Chen S, et al., 2006, Superlow fouling   45.  Izquierdo-Barba I, Sánchez-Salcedo S, Colilla M, et al.,
                 sulfobetaine and carboxybetaine polymers on glass   2011, Inhibition of bacterial adhesion on biocompatible
                 slides. Langmuir, vol.22(24): 10072–10077.         zwitterionic SBA-15 mesoporous materials.  Acta  Bio-
                 http://dx.doi.org/10.1021/la062175d                materialia, vol.7(7): 2977–2985.
              35.  Liu Y L, Han C C, Wei T-C, et al., 2010, Surface-initi-  http://dx.doi.org/10.1016/j.actbio.2011.03.005
                 ated  atom transfer radical polymerization  from porous   46.  Colilla M, Martínez-Carmona M, Sanchez-Salcedo S, et
                 poly(tetrafluoroethylene) membranes using the C-F   al., 2014, A novel zwitterionic bioceramic with dual an-
                 groups as initiators. Journal of Polymer Science: Part A:   tibacterial capability. Journal of Materials Chemistry B,
                 Polymer Chemistry, vol.48(10): 2076–2083.          vol.2(34): 5639–5651.
                 http://dx.doi.org/10.1002/pola.23975               http://dx.doi.org/10.1039/C4TB00690A
              36.  Yu B Y, Zheng J, Chang Y, et al., 2014, Surface zwitte-  47.  Vallet-Regí M and Navarrete D A, 2015, Nanoceramics
                                                                                                        nd
                 rionization of titanium for a general bio-inert control of   in  clinical use:  From  materials to  applications. 2   ed.,
                 plasma proteins, blood  cells, tissue cells, and bacteria.   Royal  Society of Chemistry, Cambridge, United King-
                 Langmuir, vol.30(25): 7502–7512.                   dom.
                 http://dx.doi.org/10.1021/la500917s                http://dx.doi.org/10.1039/9781782622550
              37.  Sin  M C,  Sun Y  M and Chang  Y, 2014, Zwitterio-  48.  Dorozhkin  S  V, 2010,  Bioceramics of calcium ortho-
                 nic-based stainless steel with well-defined polysulfobe-  phosphates. Biomaterials, vol.31(7): 1465–1485.
                 taine brushes for general bioadhesive control. ACS Ap-  http://dx.doi.org/10.1016/j.biomaterials.2009.11.050
                 plied Materials and Interfaces, vol.6(2): 861–873.   49.  Sánchez-Salcedo S, Colilla M, Izquierdo-Barba I, et al.,
                 http://dx.doi.org/10.1021/am4041256                2013, Design and preparation of biocompatible zwitte-
              38.  Vallet-Regí M and Ruiz-Hernández E, 2011, Bioceram-  rionic hydroxyapatite. Journal of Materials Chemistry B,
                 ics: from bone regeneration  to cancer nanomedicine.   vol.1(11): 1595–1606.
                 Advanced Materials, vol.23(44): 5177–5218.         http://dx.doi.org/10.1039/C3TB00122A
                 http://dx.doi.org/10.1002/adma.201101586       50.  Anselme, K, Davidson P, Popa A M, et al., 2010, The
              39.  Vallet-Regí M, 2014, Bio-ceramics with clinical applica-  interaction of cells and bacteria with surfaces structured
                 tions, John Wiley & Sons Ltd, Chichester, United Kingdom.   at the nanometre scale.  Acta  Biomaterialia, vol.6(10):
                 http://dx.doi.org/10.1002/9781118406748            3824–3846.
              40.  Vallet-Regí M, 2006, Ordered mesoporous materials in   http://dx.doi.org/10.1016/j.actbio.2010.04.001
                 the context of drug delivery systems and bone tissue en-  51.  Whitehead K A, Colligon J and Verran J, 2005, Reten-
                 gineering.  Chemistry–A European Journal, vol.12(23):   tion of microbial cells in substratum surface features of
                 5934–5943.                                         micrometer and  sub-micrometer dimensions.  Colloids
                 http://dx.doi.org/10.1002/chem.200600226           Surfaces B: Biointerfaces, vol.41(2–3): 129–138.
              41.  Vallet-Regí M, Colilla M and González B, 2011, Medi-  http://dx.doi.org/10.1016/j.colsurfb.2004.11.010
                 cal applications of organic-inorganic  hybrid  materials   52.  Campoccia  D, Montanaro  L, Agheli H,  et al.,  2006,
                 within  the field  of silica-based  bioceramics.  Chemical   Study of  Staphylococcus aureus  adhesion  on a novel
                 Society Reviews, vol.40(2): 596–607.               nanostructured surface  by  chemiluminometry.  Interna-
                 http://dx.doi.org/10.1039/C0CS00025F               tional Journal of Artificial Organs, vol.29(6): 622–629.
              42.  Vallet-Regí M, Izquierdo-Barba I and Colilla M, 2012,   53.  Marmur A, 2004, The Lotus effect: Superhydrophobici-
                                        International Journal of Bioprinting (2016)–Volume 2, Issue 1      31
   30   31   32   33   34   35   36   37   38   39   40