Page 35 - IJB-2-1
P. 35
Sandra Sánchez-Salcedo, Montserrat Colilla, Isabel Izquierdo-Barba, et al.
lizable, and hydrolyzable zwitterionic materials and Structure and functionalization of mesoporous bioce-
their derivatives for biological applications. Advanced ramics for bone tissue regeneration and local drug deli-
Materials, vol.22(9): 920–932. very. Philosophical Transactions of the Royal Society of
http://dx.doi.org/10.1002/adma.200901407 Chemistry A, vol.370(1963): 1400–1421.
32. Lalani R and Liu L, 2012, Electrospun zwitterionic http://dx.doi.org/10.1098/rsta.2011.0258
poly(sulfobetaine methacrylate) for nonadherent, supe- 43. Vallet-Regí M, Balas F and Arcos D, 2007, Mesoporous
rabsorbent, and antimicrobial wound dressing applica- materials for drug delivery. Angewandte Chemie Inter-
tions. Biomacromolecules, vol.13(6): 1853–1863. national Edition, vol.46(40): 7548–7558.
http://dx.doi.org/10.1021/bm300345e http://dx.doi.org/10.1002/anie.200604488
33. Zhang Z, Chen S, Chang Y, et al., 2006, Surface grafted 44. Colilla M, Izquierdo-Barba I, Sánchez-Salcedo S, et al.,
sulfobetaine polymers via atom transfer radical polyme- 2010, Synthesis and characterization of zwitterionic
rization as superlow fouling coatings. Journal of Physi- SBA-15 nanostructured materials. Chemistry of Mate-
cal Chemistry B, vol.110(22): 10799–10804. rials, vol.22(23): 6459–6466.
http://dx.doi.org/10.1021/jp057266i http://dx.doi.org/10.1021/cm102827y
34. Zhang Z, Chao T, Chen S, et al., 2006, Superlow fouling 45. Izquierdo-Barba I, Sánchez-Salcedo S, Colilla M, et al.,
sulfobetaine and carboxybetaine polymers on glass 2011, Inhibition of bacterial adhesion on biocompatible
slides. Langmuir, vol.22(24): 10072–10077. zwitterionic SBA-15 mesoporous materials. Acta Bio-
http://dx.doi.org/10.1021/la062175d materialia, vol.7(7): 2977–2985.
35. Liu Y L, Han C C, Wei T-C, et al., 2010, Surface-initi- http://dx.doi.org/10.1016/j.actbio.2011.03.005
ated atom transfer radical polymerization from porous 46. Colilla M, Martínez-Carmona M, Sanchez-Salcedo S, et
poly(tetrafluoroethylene) membranes using the C-F al., 2014, A novel zwitterionic bioceramic with dual an-
groups as initiators. Journal of Polymer Science: Part A: tibacterial capability. Journal of Materials Chemistry B,
Polymer Chemistry, vol.48(10): 2076–2083. vol.2(34): 5639–5651.
http://dx.doi.org/10.1002/pola.23975 http://dx.doi.org/10.1039/C4TB00690A
36. Yu B Y, Zheng J, Chang Y, et al., 2014, Surface zwitte- 47. Vallet-Regí M and Navarrete D A, 2015, Nanoceramics
nd
rionization of titanium for a general bio-inert control of in clinical use: From materials to applications. 2 ed.,
plasma proteins, blood cells, tissue cells, and bacteria. Royal Society of Chemistry, Cambridge, United King-
Langmuir, vol.30(25): 7502–7512. dom.
http://dx.doi.org/10.1021/la500917s http://dx.doi.org/10.1039/9781782622550
37. Sin M C, Sun Y M and Chang Y, 2014, Zwitterio- 48. Dorozhkin S V, 2010, Bioceramics of calcium ortho-
nic-based stainless steel with well-defined polysulfobe- phosphates. Biomaterials, vol.31(7): 1465–1485.
taine brushes for general bioadhesive control. ACS Ap- http://dx.doi.org/10.1016/j.biomaterials.2009.11.050
plied Materials and Interfaces, vol.6(2): 861–873. 49. Sánchez-Salcedo S, Colilla M, Izquierdo-Barba I, et al.,
http://dx.doi.org/10.1021/am4041256 2013, Design and preparation of biocompatible zwitte-
38. Vallet-Regí M and Ruiz-Hernández E, 2011, Bioceram- rionic hydroxyapatite. Journal of Materials Chemistry B,
ics: from bone regeneration to cancer nanomedicine. vol.1(11): 1595–1606.
Advanced Materials, vol.23(44): 5177–5218. http://dx.doi.org/10.1039/C3TB00122A
http://dx.doi.org/10.1002/adma.201101586 50. Anselme, K, Davidson P, Popa A M, et al., 2010, The
39. Vallet-Regí M, 2014, Bio-ceramics with clinical applica- interaction of cells and bacteria with surfaces structured
tions, John Wiley & Sons Ltd, Chichester, United Kingdom. at the nanometre scale. Acta Biomaterialia, vol.6(10):
http://dx.doi.org/10.1002/9781118406748 3824–3846.
40. Vallet-Regí M, 2006, Ordered mesoporous materials in http://dx.doi.org/10.1016/j.actbio.2010.04.001
the context of drug delivery systems and bone tissue en- 51. Whitehead K A, Colligon J and Verran J, 2005, Reten-
gineering. Chemistry–A European Journal, vol.12(23): tion of microbial cells in substratum surface features of
5934–5943. micrometer and sub-micrometer dimensions. Colloids
http://dx.doi.org/10.1002/chem.200600226 Surfaces B: Biointerfaces, vol.41(2–3): 129–138.
41. Vallet-Regí M, Colilla M and González B, 2011, Medi- http://dx.doi.org/10.1016/j.colsurfb.2004.11.010
cal applications of organic-inorganic hybrid materials 52. Campoccia D, Montanaro L, Agheli H, et al., 2006,
within the field of silica-based bioceramics. Chemical Study of Staphylococcus aureus adhesion on a novel
Society Reviews, vol.40(2): 596–607. nanostructured surface by chemiluminometry. Interna-
http://dx.doi.org/10.1039/C0CS00025F tional Journal of Artificial Organs, vol.29(6): 622–629.
42. Vallet-Regí M, Izquierdo-Barba I and Colilla M, 2012, 53. Marmur A, 2004, The Lotus effect: Superhydrophobici-
International Journal of Bioprinting (2016)–Volume 2, Issue 1 31

