Page 37 - IJB-2-1
P. 37
Sandra Sánchez-Salcedo, Montserrat Colilla, Isabel Izquierdo-Barba, et al.
Scaffold-based tissue engineering: Rationale for com- 86. Zein I, Hutmacher D W, Tan K C, et al., 2002, Fused
puter-aided design and solid free-form fabrication sys- deposition modeling of novel scaffold architectures for
tems. Trends in Biology, vol.22(7): 354–362. tissue engineering applications. Biomaterials, vol.23(4):
http://dx.doi.org/10.1016/j.tibtech.2004.05.005 1169–1185.
76. Hutmacher D W, 2001, Scaffold design and fabrication http://dx.doi.org/10.1016/S0142-9612(01)00232-0
technologies for engineering tissues — state of the art 87. Hutmacher D W, Schantz T, Zein I, et al., Mechanical
and future perspectives. Journal Biomaterials Science properties and cell cultural response of polycaprolac-
Polymer Edition, vol.12(1): 107–124. tone scaffolds designed and fabricated via fused deposi-
http://dx.doi.org/10.1163/156856201744489 tion modelling. Journal of Biomedical Materials Re-
77. Leong K F, Cheah C M and Chua C K, 2003, Solid search, vol.55(2): 203–216.
freeform fabrication of three-dimensional scaffolds for http://dx.doi.org/10.1002/1097-4636%28200105%2955%3
engineering replacement tissues and organs. Biomate- A2%3C203%3A%3AAID-JBM1007%3E3.0.CO%3B2-7
rials, vol.24(13): 2363–2378. 88. Cesarano J, Segalman R and Calvert P, 1998, Robo-
http://dx.doi.org/10.1016/S0142-9612(03)00030-9 casting provides mold less fabrication from slurry de-
78. Fu Q, Saiz E, Rahaman M N, et al., 2011, Bioactive position. Ceramic Industry, vol.148: 94–102.
glass scaffolds for bone tissue engineering: State of the 89. Smay J E, Cesarano J and Lewis J A, 2002, Colloidal
art and future perspectives. Materials Science and En- inks for directed assembly of 3-D periodic structures.
gineering C, vol.31(7): 1245–1256. Langmuir, vol.18(14): 5429–5437.
http://dx.doi.org/10.1016/j.msec.2011.04.022 http://dx.doi.org/10.1021/la0257135
79. Coward T J, Watson R M and Wilkinson I C, 1999, Fa- 90. Michna S, Wu W and Lewis J A, 2005, Concentrated
brication of a wax ear by rapid-process modeling using hydroxyapatite inks for direct-write assembly of 3-D
stereolithography. International Journal of Prosthodon- periodic scaffolds. Biomaterials, vol.26(28): 5632–5639.
tics, vol.12(1): 20–27. http://dx.doi.org/10.1016/j.biomaterials.2005.02.040
80. Sánchez-Salcedo S, Nieto A and Vallet-Regí M, 2008, 91. Barnes C P, Sell S A, Boland E D, et al., 2007, Nanofi-
Hydroxyapatite/β-tricalciumphosphate/agarose macro- ber technology: Designing the next generation of tissue
porous scaffolds for bone tissue engineering. Chemical engineering scaffolds. Advanced in Drug Delivery Re-
Engineering Journal, vol.137(1): 62–71. views, vol.59(14): 1413–1433.
http://dx.doi.org/10.1016/j.cej.2007.09.011 http://dx.doi.org/10.1016/j.addr.2007.04.022
81. Padilla P, Sánchez-Salcedo S and Vallet-Regí M, 2007, 92. Perera F H, Martínez-Vázquez F J, Miranda P, et al.,
Bioactive glass as precursor of designed‐architecture 2010, Clarifying the effect of sintering conditions on the
scaffolds for tissue engineering. Journal of Biomedical microstructure and mechanical properties of beta-tri-
Materials Research, vol.81A(1): 224–232. calcium phosphate. Ceramics International, vol.36(6):
http://dx.doi.org/10.1002/jbm.a.30934 1929–1935.
82. Ryan G E, Pandit A S and Apatsidis D P, 2008, Porous http://dx.doi.org/10.1016/j.ceramint.2010.03.015
titanium scaffolds fabricated using a rapid prototyping 93. Yun H S, Kim S E and Hyeon Y T, 2007, Design and
and powder metallurgy technique. Biomaterials, preparation of bioactive glasses with hierarchical pore
vol.29(27): 3625–3635. networks. Chemical Communications, vol.21(21): 2139–
http://dx.doi.org/10.1016/j.biomaterials.2008.05.032 2141.
83. Giordano R A, Wu B M, Borland S W, et al., 1996, Me- http://dx.doi.org/10.1039/B702103H
chanical properties of dense polylactic acid structures 94. García, A, Izquierdo-Barba I, Colilla M, et al., 2011,
fabricated by three dimensional printing. Journal of Preparation of 3-D scaffolds in the SiO 2 –P2O 5 system
Biomaterials Science, Polymer Edition, vol.8(1): 63–75. with tailored hierarchical meso-macroporosity. Acta
http://dx.doi.org/10.1163/156856297X00588 Biomaterialia, vol.7(3): 1265–1273.
84. Lopez-Heredia M A, Sohier J, Gaillard C, et al., 2008, http://dx.doi.org/10.1016/j.actbio.2010.10.006
Rapid prototyped porous titanium coated with calcium 95. Sánchez-Salcedo S, Shruti S, Salinas A J, et al., 2014, In
phosphate as a scaffold for bone tissue engineering. vitro antibacterial capacity and cytocompatibility of SiO 2 –
Biomaterials, vol. 29(17): 2608–2615. CaO–P 2 O 5 meso-macroporous glass scaffolds enriched
http://dx.doi.org/10.1016/j.biomaterials.2008.02.021 with ZnO. Journal Materials Chemistry B, vol.2(30):
85. Wiria F E, Shyan J Y M, Lim P N, et al., 2010, Printing 4836–4847.
of titanium implant prototype. Materials and Design, http://dx.doi.org/10.1039/C4TB00403E
vol.31(1): S101–S105. 96. Martínez-Vázquez F J, Cabañas M V, Paris J L, et al.,
http://dx.doi.org/10.1016/j.matdes.2009.12.050 2015, Fabrication of novel Si-doped hydroxyapatite/
International Journal of Bioprinting (2016)–Volume 2, Issue 1 33

