Page 37 - IJB-2-1
P. 37

Sandra Sánchez-Salcedo,  Montserrat Colilla, Isabel  Izquierdo-Barba,  et al.

                 Scaffold-based  tissue engineering: Rationale for com-  86.  Zein I, Hutmacher D W, Tan K C, et al., 2002, Fused
                 puter-aided design and  solid free-form fabrication sys-  deposition modeling of novel scaffold architectures for
                 tems. Trends in Biology, vol.22(7): 354–362.       tissue engineering applications. Biomaterials, vol.23(4):
                 http://dx.doi.org/10.1016/j.tibtech.2004.05.005    1169–1185.
              76.  Hutmacher D W, 2001, Scaffold design and fabrication   http://dx.doi.org/10.1016/S0142-9612(01)00232-0
                 technologies for engineering tissues — state of the art   87.  Hutmacher D W, Schantz T, Zein I, et al., Mechanical
                 and  future perspectives.  Journal  Biomaterials Science   properties and cell cultural  response  of polycaprolac-
                 Polymer Edition, vol.12(1): 107–124.               tone scaffolds designed and fabricated via fused deposi-
                 http://dx.doi.org/10.1163/156856201744489          tion  modelling.  Journal of Biomedical Materials Re-
              77.  Leong  K  F, Cheah C  M and Chua C K, 2003,  Solid   search, vol.55(2): 203–216.
                 freeform fabrication  of three-dimensional  scaffolds for   http://dx.doi.org/10.1002/1097-4636%28200105%2955%3
                 engineering  replacement tissues and organs.  Biomate-  A2%3C203%3A%3AAID-JBM1007%3E3.0.CO%3B2-7
                 rials, vol.24(13): 2363–2378.                  88.  Cesarano J, Segalman R  and Calvert P,  1998,  Robo-
                 http://dx.doi.org/10.1016/S0142-9612(03)00030-9    casting provides mold less fabrication from slurry de-
              78.  Fu  Q, Saiz E, Rahaman  M N,  et al.,  2011, Bioactive   position. Ceramic Industry, vol.148: 94–102.
                  glass scaffolds for bone tissue engineering: State of the   89.  Smay J E, Cesarano J and Lewis J A, 2002, Colloidal
                  art and future perspectives. Materials Science and En-  inks for  directed  assembly of 3-D  periodic  structures.
                  gineering C, vol.31(7): 1245–1256.                Langmuir, vol.18(14): 5429–5437.
                  http://dx.doi.org/10.1016/j.msec.2011.04.022      http://dx.doi.org/10.1021/la0257135
              79.  Coward T J, Watson R M and Wilkinson I C, 1999, Fa-  90.  Michna  S, Wu W and Lewis  J  A,  2005, Concentrated
                  brication of a wax ear by rapid-process modeling using   hydroxyapatite inks for direct-write assembly  of 3-D
                  stereolithography. International Journal of Prosthodon-  periodic scaffolds. Biomaterials, vol.26(28): 5632–5639.
                  tics, vol.12(1): 20–27.                           http://dx.doi.org/10.1016/j.biomaterials.2005.02.040
              80.  Sánchez-Salcedo S, Nieto  A  and Vallet-Regí M,  2008,   91.  Barnes C P, Sell S A, Boland E D, et al., 2007, Nanofi-
                 Hydroxyapatite/β-tricalciumphosphate/agarose  macro-  ber technology: Designing the next generation of tissue
                 porous scaffolds for bone tissue engineering. Chemical   engineering scaffolds.  Advanced in  Drug Delivery Re-
                 Engineering Journal, vol.137(1): 62–71.            views, vol.59(14): 1413–1433.
                 http://dx.doi.org/10.1016/j.cej.2007.09.011        http://dx.doi.org/10.1016/j.addr.2007.04.022
              81.  Padilla P, Sánchez-Salcedo S and Vallet-Regí M, 2007,   92.  Perera F  H, Martínez-Vázquez  F J, Miranda P,  et al.,
                 Bioactive glass as precursor of designed‐architecture   2010, Clarifying the effect of sintering conditions on the
                 scaffolds for tissue engineering. Journal of Biomedical   microstructure and mechanical properties of beta-tri-
                 Materials Research, vol.81A(1): 224–232.           calcium phosphate.  Ceramics International, vol.36(6):
                 http://dx.doi.org/10.1002/jbm.a.30934              1929–1935.
              82.  Ryan G E, Pandit A S and Apatsidis D P, 2008, Porous   http://dx.doi.org/10.1016/j.ceramint.2010.03.015
                 titanium scaffolds fabricated using a  rapid prototyping   93.  Yun H S, Kim S E and Hyeon Y T, 2007, Design and
                 and  powder  metallurgy  technique.  Biomaterials,   preparation  of bioactive glasses with hierarchical pore
                 vol.29(27): 3625–3635.                             networks. Chemical Communications, vol.21(21): 2139–
                 http://dx.doi.org/10.1016/j.biomaterials.2008.05.032   2141.
              83.  Giordano R A, Wu B M, Borland S W, et al., 1996, Me-  http://dx.doi.org/10.1039/B702103H
                 chanical properties of dense  polylactic acid structures   94.  García, A, Izquierdo-Barba  I, Colilla M,  et al.,  2011,
                 fabricated  by  three dimensional printing. Journal of   Preparation of 3-D  scaffolds in  the SiO 2 –P2O 5   system
                 Biomaterials Science, Polymer Edition, vol.8(1): 63–75.   with  tailored  hierarchical meso-macroporosity.  Acta
                 http://dx.doi.org/10.1163/156856297X00588          Biomaterialia, vol.7(3): 1265–1273.
              84.  Lopez-Heredia M A, Sohier J, Gaillard C, et al., 2008,   http://dx.doi.org/10.1016/j.actbio.2010.10.006
                 Rapid  prototyped porous titanium coated  with calcium   95.  Sánchez-Salcedo S, Shruti S, Salinas A J, et al., 2014, In
                 phosphate as a  scaffold for bone tissue engineering.   vitro antibacterial capacity and cytocompatibility of SiO 2 –
                 Biomaterials, vol. 29(17): 2608–2615.              CaO–P 2 O 5   meso-macroporous  glass scaffolds enriched
                 http://dx.doi.org/10.1016/j.biomaterials.2008.02.021   with  ZnO.  Journal Materials  Chemistry B, vol.2(30):
              85.  Wiria F E, Shyan J Y M, Lim P N, et al., 2010, Printing   4836–4847.
                 of titanium implant prototype.  Materials and Design,   http://dx.doi.org/10.1039/C4TB00403E
                 vol.31(1): S101–S105.                          96.  Martínez-Vázquez F J, Cabañas M V, Paris J L, et al.,
                 http://dx.doi.org/10.1016/j.matdes.2009.12.050     2015, Fabrication of novel  Si-doped hydroxyapatite/
                                        International Journal of Bioprinting (2016)–Volume 2, Issue 1      33
   32   33   34   35   36   37   38   39   40   41   42