Page 77 - IJB-2-2
P. 77
Anatoliy Popovich, Vadim Sufiiarov, Igor Polozov, et al.
Table 1. Mechanical properties of Ti-6Al-4V after SLM and uring of medical parts. Rapid Prototyping Journal,
heat treatment vol.13(4): 196–203.
Condition Tensile Yield strength, Elongation http://dx.doi.org/10.1108/13552540710776142
strength, MPa MPa at break, % 6. Sallica-Leva E, Caram R, Jardini A L, et al., 2016, Duc-
SLM, as fabricated 1220 ± 60 1140 ± 60 3.2 ± 1,5 tility improvement due to martensite α′decomposition in
SLM, 800 °С, 4 h 1080 ± 10 983 ± 25 9.9 ± 1 porous Ti–6Al–4V parts produced by selective laser
SLM, 950 °С, 1.5 h 1083 ± 10 977 ± 35 10.6 ± 1 melting for orthopedic implants. Journal of the Mecha-
EBM, as fabricated [23] 915 – 1200 830 – 1150 13 – 25 nical Behavior of Biomedical Materials, vol.54: 149–158.
http://dx.doi.org/10.1016/j.jmbbm.2015.09.020
ASTM F2924–14 ≥825 ≥895 6–10
7. Mercelis P and Kruth J P, 2006, Residual stresses in
ISO 5832-3 860 780 8–10 selective laser sintering and selective laser melting. Ra-
pid Prototyping Journal, vol.12(5): 254–265.
α′-phase into the α- and β-phases. Mechanical proper- http://dx.doi.org/10.1108/13552540610707013
ties after annealing show a good combination of ten- 8. Sames W J, List F A, Pannala S, et al., 2016, The meta-
sile strength and elongation at break, meeting the re- llurgy and processing science of metal additive manufa-
quirements of ASTM F2924 for additively manufac- cturing. International Materials Reviews, vol.6608:
tured Ti-6Al-4V alloy and ISO 5832-3 Implants for sur- 1–46.
gery from titanium 6-aluminium 4-vanadium alloy. http://dx.doi.org/10.1080/09506608.2015.1116649
The tensile strength of the annealed material is about 9. Yadroitsev I, Krakhmalev P and Yadroitsava I, 2014,
1080 ± 10 MPa with the elongation at break about 10%. Selective laser melting of Ti6Al4V alloy for biomedical
Future work will be focused on studying osseointe- applications: temperature monitoring and microstru-
gration processes and improving mechanical proper- ctural evolution. Journal of Alloys and Compounds,
ties by applying different lattice structures along with vol.583: 404–409.
computer simulation of the implant and material cha- http://dx.doi.org/10.1016/j.jallcom.2013.08.183
racteristics. 10. Popovich A A, Sufiiarov V S, Polozov I A, et al., 2015,
Microstructure and mechanical properties of Inconel
Conflict of Interest and Funding 718 produced by SLM and subsequent heat treatment.
Key Engineering Materials, vol.651–653: 665–670.
The authors declare no conflict of interest. http://dx.doi.org/10.4028/www.scientific.net/KEM.651-
References 653.665
11. Frazier W E, 2014, Metal additive manufacturing: a
1. An J, Chua C K and Mironov V, 2016, A perspective on review. Journal of Materials Engineering and Perfor-
4D bioprinting. International Journal of Bioprinting, mance, vol.23(6): 1917–1928.
vol.2(1): 3–5. http://dx.doi.org/10.1007/s11665-014-0958-z
http://dx.doi.org/10.18063/IJB.2016.01.003 12. Kurtz S, Ong K, Lau E, et al., 2007, Projections of
2. Doubrovski Z, Verlinden J C and Geraedts J M, 2011, primary and revision hip and knee arthroplasty in the
Optimal design for additive manufacturing: opportun- United States from 2005 to 2030. Journal of Bone and
ities and challenges. Volume 9: 23rd International Con- Joint Surgery. American Volume, vol.89(4): 780–785.
ference on Design Theory and Methodology; 16th Des- http://dx.doi.org/10.2106/JBJS.F.00222
ign for Manufacturing and the Life Cycle Conference, 13. Pivec R, Johnson A J, Mears S C, et al., 2012, Hip
August 28–31, 2001, 635–646. Washington, DC, USA. arthroplasty. Lancet, vol.380(9855): 1768–1777.
http://dx.doi.org/10.1115/detc2011-48131 http://dx.doi.org/10.1016/S0140-6736(12)60607-2
3. Gao W, Zhang Y, Ramanujan D, et al., 2015, The status, 14. Herberts P and Malchau H, 2000, Long-term registration
challenges, and future of additive manufacturing in has improved the quality of hip replacement: a review of
engineering. Computer-Aided Design, vol.69: 65–89. the Swedish THR register comparing 160,000 cases.
http://dx.doi.org/10.1016/j.cad.2015.04.001 Acta Orthopaedica Scandinavica, vol.71(2): 111–121.
4. Uhlmann E, Kersting R, Klein T B, et al., 2015, http://dx.doi.org/10.1080/000164700317413067
Additive manufacturing of titanium alloy for aircraft 15. Deirmengian G K, Zmistowski B, O’Neil J T, et al.,
components. Procedia CIRP, vol.35: 55–60. 2011, Management of acetabular bone loss in revision
http://dx.doi.org/10.1016/j.procir.2015.08.061 total hip arthroplasty. The Journal of Bone and Joint
5. Vandenbroucke B and Kruth J P, 2007, Selective laser Surgery. American Volume, vol.93(19): 1842–1852.
melting of biocompatible metals for rapid manufact- http://dx.doi.org/10.2106/JBJS.J.01197
International Journal of Bioprinting (2016)–Volume 2, Issue 2 83

