Page 77 - IJB-2-2
P. 77

Anatoliy Popovich, Vadim Sufiiarov, Igor Polozov,  et al.

            Table 1.  Mechanical properties  of Ti-6Al-4V after SLM  and   uring of medical parts.  Rapid  Prototyping Journal,
            heat treatment                                          vol.13(4): 196–203.
                 Condition     Tensile   Yield strength,   Elongation   http://dx.doi.org/10.1108/13552540710776142
                            strength, MPa   MPa   at break, %   6.   Sallica-Leva E, Caram R, Jardini A L, et al., 2016, Duc-
             SLM, as fabricated   1220 ± 60   1140 ± 60   3.2 ± 1,5   tility improvement due to martensite α′decomposition in
             SLM, 800 °С, 4 h   1080 ± 10   983 ± 25   9.9 ± 1      porous  Ti–6Al–4V parts produced  by selective laser
             SLM, 950 °С, 1.5 h   1083 ± 10   977 ± 35   10.6 ± 1   melting for orthopedic implants. Journal of the Mecha-
             EBM, as fabricated [23]    915 – 1200   830 – 1150   13 – 25   nical Behavior of Biomedical Materials, vol.54: 149–158.
                                                                    http://dx.doi.org/10.1016/j.jmbbm.2015.09.020
             ASTM F2924–14     ≥825       ≥895      6–10
                                                                7.   Mercelis P  and Kruth J P, 2006, Residual stresses in
             ISO 5832-3         860       780       8–10            selective laser sintering and selective laser melting. Ra-
                                                                    pid Prototyping Journal, vol.12(5): 254–265.
            α′-phase into the α- and β-phases. Mechanical proper-   http://dx.doi.org/10.1108/13552540610707013
            ties after annealing show a good combination of ten-  8.   Sames W J, List F A, Pannala S, et al., 2016, The meta-
            sile strength and elongation at break, meeting the re-  llurgy and processing science of metal additive manufa-
            quirements of ASTM F2924 for additively  manufac-       cturing.  International Materials Reviews, vol.6608:
            tured Ti-6Al-4V alloy and ISO 5832-3 Implants for sur-  1–46.
            gery from titanium 6-aluminium 4-vanadium alloy.        http://dx.doi.org/10.1080/09506608.2015.1116649
            The tensile strength of the annealed material is about   9.   Yadroitsev I, Krakhmalev P and Yadroitsava I, 2014,
            1080 ± 10 MPa with the elongation at break about 10%.   Selective laser melting of Ti6Al4V alloy for biomedical
               Future work will be focused on studying osseointe-   applications:  temperature monitoring  and microstru-
            gration  processes and improving  mechanical proper-    ctural evolution.  Journal of  Alloys and Compounds,
            ties by applying different lattice structures along with   vol.583: 404–409.
            computer simulation of the implant and material cha-    http://dx.doi.org/10.1016/j.jallcom.2013.08.183
            racteristics.                                       10.  Popovich A A, Sufiiarov V S, Polozov I A, et al., 2015,
                                                                    Microstructure  and mechanical properties of  Inconel
            Conflict of Interest and Funding                        718 produced by SLM and subsequent heat  treatment.
                                                                    Key Engineering Materials, vol.651–653: 665–670.
            The authors declare no conflict of interest.            http://dx.doi.org/10.4028/www.scientific.net/KEM.651-
            References                                              653.665
                                                                11.  Frazier W E, 2014, Metal additive manufacturing:  a
              1.   An J, Chua C K and Mironov V, 2016, A perspective on   review.  Journal of  Materials Engineering and  Perfor-
                 4D  bioprinting.  International  Journal of Bioprinting,   mance, vol.23(6): 1917–1928.
                 vol.2(1): 3–5.                                     http://dx.doi.org/10.1007/s11665-014-0958-z
                 http://dx.doi.org/10.18063/IJB.2016.01.003     12.  Kurtz S, Ong  K, Lau  E,  et al.,  2007, Projections of
              2.   Doubrovski Z, Verlinden J C and Geraedts J M, 2011,   primary  and revision hip and  knee arthroplasty in the
                 Optimal design for additive manufacturing:  opportun-  United States from 2005 to 2030. Journal of Bone and
                 ities and challenges. Volume 9: 23rd International Con-  Joint Surgery. American Volume, vol.89(4): 780–785.
                 ference on Design Theory and Methodology; 16th Des-  http://dx.doi.org/10.2106/JBJS.F.00222
                 ign for Manufacturing and the Life Cycle Conference,   13.  Pivec R, Johnson A J, Mears  S C,  et al.,  2012, Hip
                 August 28–31, 2001, 635–646. Washington, DC, USA.   arthroplasty. Lancet, vol.380(9855): 1768–1777.
                 http://dx.doi.org/10.1115/detc2011-48131           http://dx.doi.org/10.1016/S0140-6736(12)60607-2
              3.   Gao W, Zhang Y, Ramanujan D, et al., 2015, The status,   14.  Herberts P and Malchau H, 2000, Long-term registration
                 challenges,  and future of additive manufacturing  in   has improved the quality of hip replacement: a review of
                 engineering. Computer-Aided Design, vol.69: 65–89.     the Swedish THR register  comparing 160,000 cases.
                 http://dx.doi.org/10.1016/j.cad.2015.04.001        Acta Orthopaedica Scandinavica, vol.71(2): 111–121.
              4.   Uhlmann E, Kersting R, Klein T B,  et al.,  2015,   http://dx.doi.org/10.1080/000164700317413067
                 Additive manufacturing of titanium alloy  for  aircraft   15.  Deirmengian G K,  Zmistowski B, O’Neil J  T,  et al.,
                 components. Procedia CIRP, vol.35: 55–60.          2011, Management of  acetabular bone loss in revision
                 http://dx.doi.org/10.1016/j.procir.2015.08.061     total  hip arthroplasty.  The Journal of Bone and Joint
              5.   Vandenbroucke B and Kruth J P, 2007, Selective laser   Surgery. American Volume, vol.93(19): 1842–1852.
                 melting of biocompatible metals for rapid manufact-  http://dx.doi.org/10.2106/JBJS.J.01197

                                        International Journal of Bioprinting (2016)–Volume 2, Issue 2      83
   72   73   74   75   76   77   78   79   80   81   82