Page 78 - IJB-2-2
P. 78
Producing hip implants of titanium alloys by additive manufacturing
16. Civinini R, Capone A, Carulli C, et al., 2008, Acetabular ser melting of titanium alloy with 50 wt% tantalum: mi-
revisions using a cementless oblong cup: five to ten year crostructure and mechanical properties. Journal of Al-
results. International Orthopaedics, vol.32(2): 189– 193. loys and Compounds, vol.660, 461-470.
http://dx.doi.org/10.1007/s00264-006-0307-4 http://dx.doi.org/10.1016/j.jallcom.2015.11.141
17. Issack P S, Nousiainen M, Beksac B, et al., 2009, 26. Popovich A, Sufiiarov V, Borisov E, et al., 2015, Micr-
Acetabular component revision in total hip arthroplasty. ostructure and mechanical properties of Ti-6Al-4V man-
Part I: cementless shells. American Journal of Ortho- ufactured by SLM. Key Engineering Materials, vol.651–
pedics (Belle Mead NJ), vol.38(10): 509–514. 653: 677–682.
18. Lütjering G, Williams J C and Gysler A. 2000, Micr- http://dx.doi.org/10.4028/www.scientific.net/KEM.651-
ostructure and mechanical properties of titanium alloys, 653.677
in Microstructure and Properties of Materials vol.2, Li J 27. Sufiiarov V S, Popovich A A, Borisov E V, et al., 2015,
C M (ed.), World Scientific Publishing Co. Pte. Ltd., Selective laser melting of titanium alloy and manufa-
Singapore, 49–55. cturing of gas-turbine engine part blanks. Tsvetnye Met-
19. Sun J, Yang Y and Wang D, 2013, Mechanical pro- ally, vol.8: 76–80.
perties of a Ti6Al4V porous structure produced by sel- http://dx.doi.org/10.17580/tsm.2015.08.11
ective laser melting. Materials & Design, vol.49: 545– 28. Warnke P H, Douglas T, Wollny P, et al., 2009, Rapid
552. prototyping: porous titanium alloy scaffolds produced by
http://dx.doi.org/10.1016/j.matdes.2013.01.038 selective laser melting for bone tissue engineering. Tissue
20. Hallmann S, Glockner P, Daniel C, et al., 2015, Man- Engineering Part C: Methods, vol.15(2): 115–124.
ufacturing of medical implants by combination of sel- http://dx.doi.org/10.1089/ten.tec.2008.0288
ective laser melting and laser ablation. Lasers in Man- 29. Vrancken B, Thijs L, Kruth J P, et al., 2014, Micr-
ufacturing and Materials Processing, vol.2(3): 124–134. ostructure and mechanical properties of a novel β titan-
http://dx.doi.org/10.1007/s40516-015-0010-7 ium metallic composite by selective laser melting. Acta
21. Harrysson O L A, Cansizoglu O, Marcellin-Little D J, et Materialia, vol.68: 150–158.
al., 2008, Direct metal fabrication of titanium implants http://dx.doi.org/10.1016/j.actamat.2014.01.018
with tailored materials and mechanical properties using 30. Thijs L, Verhaeghe F, Craeghs T, et al., 2010, A study of
electron beam melting technology. Materials Science the microstructural evolution during selective laser mel-
and Engineering: C, vol.28(3): 366–373. ting of Ti–6Al–4V. Acta Materialia, vol.58(9): 3303–
http://dx.doi.org/10.1016/j.msec.2007.04.022 3312.
22. Cansizoglu O, Harrysson O, Cormier D, et al., 2008, http://dx.doi.org/10.1016/j.actamat.2010.02.004
Properties of Ti–6Al–4V non-stochastic lattice struc- 31. Facchini L, Magalini E, Robotti P, et al., 2010, Ductility
tures fabricated via electron beam melting. Materials of a Ti-6Al-4V alloy produced by selective laser melting
Science and Engineering: A, 492(1–2): 468–474. of prealloyed powders. Rapid Prototyping Journal,
http://dx.doi.org/10.1016/j.msea.2008.04.002 vol.16(6): 450–459.
23. Sing S L, An J, Yeong W Y, et al., 2016, Laser and elec- http://dx.doi.org/10.1108/13552541011083371
tron-beam powder-bed additive manufacturing of metal- 32. Liu F, Lin X, Yang G, et al., 2011, Microstructure and
lic implants: a review on processes, materials and de- residual stress of laser rapid formed Inconel 718 nickel-
signs. Journal of Orthopaedic Research, vol.34(3): base superalloy. Optics & Laser Technology, vol.43(1):
369–385. 208–213.
http://dx.doi.org/10.1002/jor.23075 http://dx.doi.org/10.1016/j.optlastec.2010.06.015
24. Yap C Y, Chua C K, Dong Z L, et al., 2015, Review of 33. Yadroitsev I and Yadroitsava I, 2015, Evaluation of res-
selective laser melting: materials and applications. App- idual stress in stainless steel 316L and Ti6Al4V samples
lied Physics Reviews, vol.2(4): 041101. produced by selective laser melting. Virtual and Phy-
http://dx.doi.org/10.1063/1.4935926 sical Prototyping, vol.10(2): 67–76.
25. Sing S L, Yeong W Y and Wiria F E, 2016, Selective la- http://dx.doi.org/10.1080/17452759.2015.1026045
84 International Journal of Bioprinting (2016)–Volume 2, Issue 2

