Page 78 - IJB-2-2
P. 78

Producing hip implants of titanium alloys by additive manufacturing

              16.  Civinini R, Capone A, Carulli C, et al., 2008, Acetabular   ser melting of titanium alloy with 50 wt% tantalum: mi-
                 revisions using a cementless oblong cup: five to ten year   crostructure and mechanical properties.  Journal of Al-
                 results. International Orthopaedics, vol.32(2): 189– 193.   loys and Compounds, vol.660, 461-470.
                 http://dx.doi.org/10.1007/s00264-006-0307-4        http://dx.doi.org/10.1016/j.jallcom.2015.11.141
              17.  Issack  P S, Nousiainen  M, Beksac B,  et al.,  2009,   26.  Popovich A, Sufiiarov V, Borisov E, et al., 2015, Micr-
                 Acetabular component revision in total hip arthroplasty.   ostructure and mechanical properties of Ti-6Al-4V man-
                 Part I:  cementless shells.  American Journal  of Ortho-  ufactured by SLM. Key Engineering Materials, vol.651–
                 pedics (Belle Mead NJ), vol.38(10): 509–514.       653: 677–682.
              18.  Lütjering G, Williams J C and  Gysler A. 2000, Micr-  http://dx.doi.org/10.4028/www.scientific.net/KEM.651-
                 ostructure and mechanical properties of titanium alloys,   653.677
                 in Microstructure and Properties of Materials vol.2, Li J   27.  Sufiiarov V S, Popovich A A, Borisov E V, et al., 2015,
                 C M (ed.), World Scientific Publishing Co. Pte. Ltd.,   Selective laser  melting of titanium alloy  and  manufa-
                 Singapore, 49–55.                                  cturing of gas-turbine engine part blanks. Tsvetnye Met-
              19.  Sun  J, Yang Y and Wang D,  2013, Mechanical pro-  ally, vol.8: 76–80.
                 perties of a Ti6Al4V porous structure produced by sel-  http://dx.doi.org/10.17580/tsm.2015.08.11
                 ective laser melting. Materials & Design, vol.49: 545–   28.  Warnke P H, Douglas T, Wollny P, et al., 2009, Rapid
                 552.                                               prototyping: porous titanium alloy scaffolds produced by
                 http://dx.doi.org/10.1016/j.matdes.2013.01.038     selective laser melting for bone tissue engineering. Tissue
              20.  Hallmann S, Glockner P, Daniel C, et al., 2015, Man-  Engineering Part C: Methods, vol.15(2): 115–124.
                 ufacturing of medical implants  by combination of sel-  http://dx.doi.org/10.1089/ten.tec.2008.0288
                 ective laser melting and laser ablation. Lasers in Man-  29.  Vrancken B, Thijs L, Kruth J P,  et al.,  2014, Micr-
                 ufacturing and Materials Processing, vol.2(3): 124–134.     ostructure and mechanical properties of a novel β titan-
                 http://dx.doi.org/10.1007/s40516-015-0010-7        ium metallic composite by selective laser melting. Acta
              21.  Harrysson O L A, Cansizoglu O, Marcellin-Little D J, et   Materialia, vol.68: 150–158.
                 al., 2008, Direct metal fabrication of titanium implants   http://dx.doi.org/10.1016/j.actamat.2014.01.018
                 with tailored materials and mechanical properties using   30.  Thijs L, Verhaeghe F, Craeghs T, et al., 2010, A study of
                 electron  beam melting technology.  Materials Science   the microstructural evolution during selective laser mel-
                 and Engineering: C, vol.28(3): 366–373.            ting  of Ti–6Al–4V.  Acta Materialia, vol.58(9): 3303–
                 http://dx.doi.org/10.1016/j.msec.2007.04.022       3312.
              22.  Cansizoglu O,  Harrysson O, Cormier D,  et al.,  2008,   http://dx.doi.org/10.1016/j.actamat.2010.02.004
                 Properties of Ti–6Al–4V non-stochastic lattice  struc-  31.  Facchini L, Magalini E, Robotti P, et al., 2010, Ductility
                 tures fabricated via  electron beam melting.  Materials   of a Ti-6Al-4V alloy produced by selective laser melting
                 Science and Engineering: A, 492(1–2): 468–474.     of  prealloyed powders.  Rapid  Prototyping Journal,
                 http://dx.doi.org/10.1016/j.msea.2008.04.002       vol.16(6): 450–459.
              23.  Sing S L, An J, Yeong W Y, et al., 2016, Laser and elec-  http://dx.doi.org/10.1108/13552541011083371
                 tron-beam powder-bed additive manufacturing of metal-  32.  Liu F, Lin X, Yang G, et al., 2011, Microstructure and
                 lic implants:  a  review on processes, materials and de-  residual stress of laser rapid formed Inconel 718 nickel-
                 signs.  Journal of Orthopaedic  Research, vol.34(3):   base superalloy. Optics & Laser Technology, vol.43(1):
                 369–385.                                           208–213.
                 http://dx.doi.org/10.1002/jor.23075                http://dx.doi.org/10.1016/j.optlastec.2010.06.015
              24.  Yap C Y, Chua C K, Dong Z L, et al., 2015, Review of   33.  Yadroitsev I and Yadroitsava I, 2015, Evaluation of res-
                 selective laser melting: materials and applications. App-  idual stress in stainless steel 316L and Ti6Al4V samples
                 lied Physics Reviews, vol.2(4): 041101.            produced by selective laser melting.  Virtual and Phy-
                 http://dx.doi.org/10.1063/1.4935926                sical Prototyping, vol.10(2): 67–76.
              25.  Sing S L, Yeong W Y and Wiria F E, 2016, Selective la-  http://dx.doi.org/10.1080/17452759.2015.1026045











            84                          International Journal of Bioprinting (2016)–Volume 2, Issue 2
   73   74   75   76   77   78   79   80   81   82   83