Page 110 - IJB-10-2
P. 110

International Journal of Bioprinting                       3D-printed nanocomposites: Synthesis & applications




               (lactic acid)/graphene oxide nanocomposites: anisotropic   92.  Wilkinson N, Smith M, Kay R,  Harris RA. A review of
               properties. ACS Appl Mater Interfaces. 2017;9(4):4015-4023.   aerosol  jet  printing—a  non-traditional  hybrid  process
               doi: 10.1021/acsami.6b11793                        for micro-manufacturing.  Int  J Adv  Manuf  Technol.
                                                                  2019;105(11):4599-4619.
            80.  Iijima S. Helical microtubules of graphitic carbon. Nature.
               1991;354(6348):56-58.                              doi: 10.1007/s00170-019-03438-2
               doi: 10.1038/354056a0                           93.  Filgueira D, Holmen S, Melbø JK, Moldes D, Echtermeyer AT,
            81.  Stauffer D, Aharony A. Introduction to Percolation Theory.   Chinga-Carrasco G. 3D printable filaments made of biobased
               London: Taylor & Francis; 2018.                    polyethylene biocomposites. Polymers. 2018;10(3):314.
               doi: 10.1201/9781315274386                         doi: 10.3390/polym10030314
            82.  Pang H, Xu L, Yan DX, Li Z-M. Conductive polymer   94.  Liu R, Chen Y, Cao J. Effects of modifier type on properties
               composites  with  segregated  structures.  Prog Polym Sci.   of in situ organo-montmorillonite modified wood flour/
               2014;39(11):1908-1933.                             poly (lactic acid) composites.  ACS Appl Mater Interfaces.
               doi: 10.1016/j.progpolymsci.2014.07.007            2016;8(1):161-168.
                                                                  doi: 10.1021/acsami.5b07989
            83.  Gnanasekaran K, Heijmans T, Van Bennekom S, et al. 3D
               printing of CNT-and graphene-based conductive polymer   95.  Yang Z, Bi H, Bi Y, Rodrigue D, Xu M, Feng X. Comparison
               nanocomposites by fused deposition modeling. Appl Mater   between polyethylene glycol and tributyl citrate to modify
               Today. 2017;9:21-28.                               the properties of wood fiber/polylactic acid biocomposites.
               doi: 10.1016/j.apmt.2017.04.003                    Polym Compos. 2019;40(4):1384-1394.
                                                                  doi: 10.1002/pc.24872
            84.  Gonzalez G, Chiappone A, Roppolo I, et al. Development of
               3D printable formulations containing CNT with enhanced   96.  Vaidya AA, Collet C, Gaugler M, Lloyd-Jones G. Integrating
               electrical properties. Polymer. 2017;109:246-253.   softwood biorefinery  lignin  into  polyhydroxybutyrate
               doi: 10.1016/j.polymer.2016.12.051                 composites and application in 3D printing.  Mater Today
                                                                  Commun. 2019;19:286-296.
            85.  Shin SR, Bae H, Cha JM, et al. Carbon nanotube reinforced      doi: 10.1016/j.mtcomm.2019.02.008
               hybrid microgels as scaffold materials for cell encapsulation.
               ACS Nano. 2012;6(1):362-272.                    97.  Zhao X, Tekinalp H, Meng X,  et al. Poplar as biofiber
               doi: 10.1021/nn203711s                             reinforcement in  composites  for large-scale  3D  printing.
                                                                  ACS Appl Bio Mater. 2019;2(10):4557-4570.
            86.  Lee J, Manoharan V, Cheung L, et al. Nanoparticle-based hybrid      doi: 10.1021/acsabm.9b00675
               scaffolds for deciphering the role of multimodal cues in cardiac
               tissue engineering. ACS Nano. 2019;13(11):12525-12539.   98.  Liu H, He H, Peng X, Huang B, Li J. Three,He H, Peng X,021/
               doi: 10.1021/acsnano.9b03050                       acsabm.9b00675omposites for large-scale 3D printing. and
                                                                  application in 3D printing. c acid biocomposites. . lastic
            87.  Li T, Chen T, Shen X, Shi HH, Jabaria E, Naguib HE. A binder   matrix. ation. lPolym Adv Technol. 2019;30(4):910-922.
               jet 3D printed MXene composite for strain sensing and energy      doi: 10.1002/pat.4524
               storage application. Nanoscale Adv. 2022;4(3):916-925.
               doi: 10.1039/D1NA00698C                         99.  Jang J, Yi H-G, Cho D-W. 3D printed tissue models: present
                                                                  and future. ACS Biomater Sci Eng. 2016;2(10):1722-1731.
            88.  Noor N, Shapira A, Edri R,  Gal I, Wertheim L, Dvir T.      doi: 10.1021/acsbiomaterials.6b00129
               3D printing of personalized thick and perfusable cardiac
               patches and hearts. Adv Sci. 2019;6(11):1900344.   100. Mohan  TS,  Datta  P,  Nesaei  S,  Ozbolat  V,  Ozbolat  IT.  3D
               doi: 10.1002/advs.201900344                        coaxial bioprinting: process mechanisms, bioinks and
                                                                  applications. Prog Biomed Eng. 2022;4(2):022003.
            89.  Hong SY, Sun Y, Lee J, et al. 3D printing of free-standing      doi: 10.1088/2516-1091/ac631c
               Ti C T /PEO architecture for electromagnetic interference
                   2
                 3
                    x
               shielding. Polymer. 2021;236:124312.            101. Li W, Hu X, Yang S,  et al. A novel tissue-engineered 3D
               doi: 10.1016/j.polymer.2021.124312                 tumor model for anti-cancer drug discovery. Biofabrication.
                                                                  2018;11(1):015004.
            90.  Yuan W, Liu H, Wang X, Huang L, Yin F, Yuan Y. Conductive
               MXene/melamine sponge combined with 3D printing resin      doi: 10.1088/1758-5090/aae270
               base prepared as an electromagnetic interference shielding   102. Bhise NS, Ribas J, Manoharan V,  et al. Organ-on-a-chip
               switch. Compos Part A Appl Sci Manuf. 2021;143:106238.   platforms for studying drug delivery systems.  J Control
               doi: 10.1016/j.compositesa.2020.106238             Release. 2014;190:82-93.
                                                                  doi: 10.1016/j.jconrel.2014.05.004
            91.  Basara G, Saeidi-Javash M, Ren X,  et al. Electrically
               conductive 3D printed Ti3C2Tx MXene-PEG composite   103. Murphy SV, De Coppi P, Atala A. Opportunities and
               constructs for cardiac tissue engineering.  Acta Biomater.   challenges of translational 3D bioprinting. Nat Biomed Eng.
               2020;139:179-189.                                  2020;4(4):370-380.
               doi: 10.1016/j.actbio.2020.12.033                  doi: 10.1038/s41551-019-0471-7


            Volume 10 Issue 2 (2024)                       102                                doi: 10.36922/ijb.1637
   105   106   107   108   109   110   111   112   113   114   115