Page 110 - IJB-10-2
P. 110
International Journal of Bioprinting 3D-printed nanocomposites: Synthesis & applications
(lactic acid)/graphene oxide nanocomposites: anisotropic 92. Wilkinson N, Smith M, Kay R, Harris RA. A review of
properties. ACS Appl Mater Interfaces. 2017;9(4):4015-4023. aerosol jet printing—a non-traditional hybrid process
doi: 10.1021/acsami.6b11793 for micro-manufacturing. Int J Adv Manuf Technol.
2019;105(11):4599-4619.
80. Iijima S. Helical microtubules of graphitic carbon. Nature.
1991;354(6348):56-58. doi: 10.1007/s00170-019-03438-2
doi: 10.1038/354056a0 93. Filgueira D, Holmen S, Melbø JK, Moldes D, Echtermeyer AT,
81. Stauffer D, Aharony A. Introduction to Percolation Theory. Chinga-Carrasco G. 3D printable filaments made of biobased
London: Taylor & Francis; 2018. polyethylene biocomposites. Polymers. 2018;10(3):314.
doi: 10.1201/9781315274386 doi: 10.3390/polym10030314
82. Pang H, Xu L, Yan DX, Li Z-M. Conductive polymer 94. Liu R, Chen Y, Cao J. Effects of modifier type on properties
composites with segregated structures. Prog Polym Sci. of in situ organo-montmorillonite modified wood flour/
2014;39(11):1908-1933. poly (lactic acid) composites. ACS Appl Mater Interfaces.
doi: 10.1016/j.progpolymsci.2014.07.007 2016;8(1):161-168.
doi: 10.1021/acsami.5b07989
83. Gnanasekaran K, Heijmans T, Van Bennekom S, et al. 3D
printing of CNT-and graphene-based conductive polymer 95. Yang Z, Bi H, Bi Y, Rodrigue D, Xu M, Feng X. Comparison
nanocomposites by fused deposition modeling. Appl Mater between polyethylene glycol and tributyl citrate to modify
Today. 2017;9:21-28. the properties of wood fiber/polylactic acid biocomposites.
doi: 10.1016/j.apmt.2017.04.003 Polym Compos. 2019;40(4):1384-1394.
doi: 10.1002/pc.24872
84. Gonzalez G, Chiappone A, Roppolo I, et al. Development of
3D printable formulations containing CNT with enhanced 96. Vaidya AA, Collet C, Gaugler M, Lloyd-Jones G. Integrating
electrical properties. Polymer. 2017;109:246-253. softwood biorefinery lignin into polyhydroxybutyrate
doi: 10.1016/j.polymer.2016.12.051 composites and application in 3D printing. Mater Today
Commun. 2019;19:286-296.
85. Shin SR, Bae H, Cha JM, et al. Carbon nanotube reinforced doi: 10.1016/j.mtcomm.2019.02.008
hybrid microgels as scaffold materials for cell encapsulation.
ACS Nano. 2012;6(1):362-272. 97. Zhao X, Tekinalp H, Meng X, et al. Poplar as biofiber
doi: 10.1021/nn203711s reinforcement in composites for large-scale 3D printing.
ACS Appl Bio Mater. 2019;2(10):4557-4570.
86. Lee J, Manoharan V, Cheung L, et al. Nanoparticle-based hybrid doi: 10.1021/acsabm.9b00675
scaffolds for deciphering the role of multimodal cues in cardiac
tissue engineering. ACS Nano. 2019;13(11):12525-12539. 98. Liu H, He H, Peng X, Huang B, Li J. Three,He H, Peng X,021/
doi: 10.1021/acsnano.9b03050 acsabm.9b00675omposites for large-scale 3D printing. and
application in 3D printing. c acid biocomposites. . lastic
87. Li T, Chen T, Shen X, Shi HH, Jabaria E, Naguib HE. A binder matrix. ation. lPolym Adv Technol. 2019;30(4):910-922.
jet 3D printed MXene composite for strain sensing and energy doi: 10.1002/pat.4524
storage application. Nanoscale Adv. 2022;4(3):916-925.
doi: 10.1039/D1NA00698C 99. Jang J, Yi H-G, Cho D-W. 3D printed tissue models: present
and future. ACS Biomater Sci Eng. 2016;2(10):1722-1731.
88. Noor N, Shapira A, Edri R, Gal I, Wertheim L, Dvir T. doi: 10.1021/acsbiomaterials.6b00129
3D printing of personalized thick and perfusable cardiac
patches and hearts. Adv Sci. 2019;6(11):1900344. 100. Mohan TS, Datta P, Nesaei S, Ozbolat V, Ozbolat IT. 3D
doi: 10.1002/advs.201900344 coaxial bioprinting: process mechanisms, bioinks and
applications. Prog Biomed Eng. 2022;4(2):022003.
89. Hong SY, Sun Y, Lee J, et al. 3D printing of free-standing doi: 10.1088/2516-1091/ac631c
Ti C T /PEO architecture for electromagnetic interference
2
3
x
shielding. Polymer. 2021;236:124312. 101. Li W, Hu X, Yang S, et al. A novel tissue-engineered 3D
doi: 10.1016/j.polymer.2021.124312 tumor model for anti-cancer drug discovery. Biofabrication.
2018;11(1):015004.
90. Yuan W, Liu H, Wang X, Huang L, Yin F, Yuan Y. Conductive
MXene/melamine sponge combined with 3D printing resin doi: 10.1088/1758-5090/aae270
base prepared as an electromagnetic interference shielding 102. Bhise NS, Ribas J, Manoharan V, et al. Organ-on-a-chip
switch. Compos Part A Appl Sci Manuf. 2021;143:106238. platforms for studying drug delivery systems. J Control
doi: 10.1016/j.compositesa.2020.106238 Release. 2014;190:82-93.
doi: 10.1016/j.jconrel.2014.05.004
91. Basara G, Saeidi-Javash M, Ren X, et al. Electrically
conductive 3D printed Ti3C2Tx MXene-PEG composite 103. Murphy SV, De Coppi P, Atala A. Opportunities and
constructs for cardiac tissue engineering. Acta Biomater. challenges of translational 3D bioprinting. Nat Biomed Eng.
2020;139:179-189. 2020;4(4):370-380.
doi: 10.1016/j.actbio.2020.12.033 doi: 10.1038/s41551-019-0471-7
Volume 10 Issue 2 (2024) 102 doi: 10.36922/ijb.1637

