Page 108 - IJB-10-2
P. 108
International Journal of Bioprinting 3D-printed nanocomposites: Synthesis & applications
33. Cidonio G, Glinka M, Kim YH, et al. Nanoclay-based and embedded vascular channels. Sci Adv. 2019;5(9):
3D printed scaffolds promote vascular ingrowth ex vivo eaaw2459.
and generate bone mineral tissue in vitro and in vivo. doi: 10.1126/sciadv.aaw2459
Biofabrication. 2020;12(3):035010. 46. Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA,
doi: 10.1088/1758-5090/ab8753
Lewis JA. 3D bioprinting of vascularized, heterogeneous cellgh
34. Leu Alexa R, Ianchis R, Savu D, et al. 3D printing of cellular density and emAdv Mater. 2014;26(19):3124-3130.
alginate-natural clay hydrogel-based nanocomposites. Gels. doi: 10.1002/adma.201305506
2021;7(4):211.
doi: 10.3390/gels7040211 47. Wu W, DeConinck A, Lewis JA. Omnidirectional
printing of 3D microvascular networks. Adv Mater.
35. Habib A, Khoda B. Development of clay based novel hybrid 2011;23(24):H178-H183.
bio-ink for 3D bio-printing process. J Manuf Process. doi: 10.1002/adma.201004625
2019;38:76-87.
doi: 10.1016/j.jmapro.2018.12.034 48. Bhattacharjee T, Zehnder SM, Rowe KG, et al. Writing in the
granular gel medium. Sci Adv. 2015;1(8):e1500655.
36. Cui ZK, Kim S, Baljon JJ, Wu BM, Aghaloo T, Lee doi: 10.1126/sciadv.1500655
M. Microporous methacrylated glycol chitosan-
montmorillonite nanocomposite hydrogel for bone tissue 49. Hinton TJ, Jallerat Q, Palchesko RN, et al. Three-dimensional
engineering. Nat Commun. 2019;10(1):1-10. printing of complex biological structures by freeform
doi: 10.1038/s41467-019-11511-3 reversible embedding of suspended hydrogels. Sci Adv.
2015;1(9):e1500758.
37. Ding F, Liu J, Zeng S, et al. Biomimetic nanocoatings with doi: 10.1126/sciadv.1500758
exceptional mechanical, barrier, and flame-retardant
properties from large-scale one-step coassembly. Sci Adv. 50. O’Bryan CS, Bhattacharjee T, Hart S, et al. Self-assembled
2017;3(7):e1701212. micro-organogels for 3D printing silicone structures. Sci
doi: 10.1126/sciadv.1701212 Adv. 2017;3(5):e1602800.
doi: 10.1126/sciadv.1602800
38. Sun L, Parker ST, Syoji D, Wang X, Lewis JA, Kaplan DL.
Directnarker ST, Syoji D, adv.1701212nal mechanical, barrier, 51. Choi Y-J, Jun Y-J, Kim DY, et al. A 3D cell printed muscle
and flame-retardanAdv Healthc Mater. 2012;1(6):729-735. construct with tissue-derived bioink for the treatment of
doi: 10.1002/adhm.201200057 volumetric muscle loss. Biomaterials. 2019;206:160-169.
doi: 10.1016/j.biomaterials.2019.03.036
39. Michna S, Wu W, Lewis JA. Concentrated hydroxyapatite
inks for direct-write assembly of 3-D periodic scaffolds. 52. Jeon O, Lee YB, Jeong H, Lee SJ, Wells D, Alsberg E. Individual
Biomaterials. 2005;26(28):5632-5639. cell-only bioink and photocurable supporting medium
doi: 10.1016/j.biomaterials.2005.02.040 for 3D printing and generation of engineered tissues with
complex geometries. Mater Horiz. 2019;6(8):1625-1631.
40. Zhang T, Yan KC, Ouyang L, Sun W. Mechanical doi: 10.1039/c9mh00375d
characterization of bioprinted in vitro soft tissue models.
Biofabrication. 2013;5(4):045010. 53. Ouyang L. Pushing the rheological and mechanical
doi: 10.1088/1758-5082/5/4/045010 boundaries of extrusion-based 3D bioprinting. Trends
Biotechnol. 2022;40(7):P891-902.
41. Gao G, He Y, Fu J-z, Liu A, Ma L. Coaxial nozzle-assisted doi: 10.1016/j.tibtech.2022.01.001
3D bioprinting with built-in microchannels for nutrients
delivery. Biomaterials. 2015;61:203-215. 54. Siacor FDC, Chen Q, Zhao JY, et al. On the additive
doi: 10.1016/j.biomaterials.2015.05.031 manufacturing (3D printing) of viscoelastic materials and
flow behavior: from composites to food manufacturing.
42. Ozbolat IT, Peng W, Ozbolat V. Application areas of 3D Addit Manuf. 2021;45:102043.
bioprinting. Drug Discov Today. 2016;21(8):1257-1271. doi: 10.1016/j.addma.2021.102043
doi: 10.1016/j.drudis.2016.04.006
55. Golzar H, Wu Y, Ganguly S, Tang XS. Micro-extrusion 3D
43. Jia W, Gungor-Ozkerim PS, Zhang YS, et al. Direct 3D printing of articular cartilage substitutes with a multizonal
bioprinting of perfusable vascular constructs using a blend structure using hydrophilic and rapidly curing silicone-
bioink. Biomaterials. 2016;106:58-68. based ink materials. Addit Manuf. 2023;73:103691.
doi: 10.1016/j.biomaterials.2016.07.038
doi: 10.1016/j.addma.2023.103691
44. Florczyk SJ, Simon MH, Juba D, et al. A bioinformatics 3D 56. Dealy J, Tee T, Petersen J. A concentric-cylinder rheometer
cellular morphotyping strategy for assessing biomaterial for polymer melts. In: Vallet G, Meskat W, eds. Rheological
scaffold niches. ACS Biomater Sci Eng. 2017;3(10):2302-2313. Theories Measuring Techniques in Rheology Test Methods in
doi: 10.1021/acsbiomaterials.7b00473
Rheology Fractures Rheological Properties of Materials Rheo-
45. Skylar-Scott MA, Uzel SG, Nam LL, et al. Biomanufacturing Optics Biorheology. Heidelberg: Steinkopff; 1975:466-474.
of organ-specific tissues with high cellular density doi: 10.1007/978-3-662-41458-3_69
Volume 10 Issue 2 (2024) 100 doi: 10.36922/ijb.1637

