Page 108 - IJB-10-2
P. 108

International Journal of Bioprinting                       3D-printed nanocomposites: Synthesis & applications




            33.  Cidonio  G, Glinka M,  Kim  YH,  et  al. Nanoclay-based   and embedded vascular channels.  Sci Adv. 2019;5(9):
               3D printed scaffolds promote vascular ingrowth ex vivo   eaaw2459.
               and  generate  bone  mineral  tissue  in  vitro  and  in  vivo.      doi: 10.1126/sciadv.aaw2459
               Biofabrication. 2020;12(3):035010.              46.  Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA,
               doi: 10.1088/1758-5090/ab8753
                                                                  Lewis JA. 3D bioprinting of vascularized, heterogeneous cellgh
            34.  Leu Alexa R, Ianchis R, Savu D, et al. 3D printing of   cellular density and emAdv Mater. 2014;26(19):3124-3130.
               alginate-natural clay hydrogel-based nanocomposites. Gels.      doi: 10.1002/adma.201305506
               2021;7(4):211.
               doi: 10.3390/gels7040211                        47.  Wu W, DeConinck A, Lewis JA. Omnidirectional
                                                                  printing of 3D microvascular networks.  Adv Mater.
            35.  Habib A, Khoda B. Development of clay based novel hybrid   2011;23(24):H178-H183.
               bio-ink for 3D bio-printing process.  J Manuf Process.      doi: 10.1002/adma.201004625
               2019;38:76-87.
               doi: 10.1016/j.jmapro.2018.12.034               48.  Bhattacharjee T, Zehnder SM, Rowe KG, et al. Writing in the
                                                                  granular gel medium. Sci Adv. 2015;1(8):e1500655.
            36.  Cui  ZK, Kim  S, Baljon JJ,  Wu BM,  Aghaloo  T, Lee      doi: 10.1126/sciadv.1500655
               M.   Microporous  methacrylated  glycol  chitosan-
               montmorillonite nanocomposite hydrogel for bone tissue   49.  Hinton TJ, Jallerat Q, Palchesko RN, et al. Three-dimensional
               engineering. Nat Commun. 2019;10(1):1-10.          printing of complex biological structures by freeform
               doi: 10.1038/s41467-019-11511-3                    reversible embedding of suspended hydrogels.  Sci Adv.
                                                                  2015;1(9):e1500758.
            37.  Ding F, Liu J, Zeng S, et al. Biomimetic nanocoatings with      doi: 10.1126/sciadv.1500758
               exceptional mechanical,  barrier, and  flame-retardant
               properties from large-scale one-step coassembly.  Sci Adv.   50.  O’Bryan CS, Bhattacharjee T, Hart S, et al. Self-assembled
               2017;3(7):e1701212.                                micro-organogels  for 3D  printing silicone  structures.  Sci
               doi: 10.1126/sciadv.1701212                        Adv. 2017;3(5):e1602800.
                                                                  doi: 10.1126/sciadv.1602800
            38.  Sun L, Parker ST, Syoji D, Wang X, Lewis JA, Kaplan DL.
               Directnarker ST, Syoji D, adv.1701212nal mechanical, barrier,   51.  Choi Y-J, Jun Y-J, Kim DY, et al. A 3D cell printed muscle
               and flame-retardanAdv Healthc Mater. 2012;1(6):729-735.   construct with tissue-derived bioink  for  the treatment of
               doi: 10.1002/adhm.201200057                        volumetric muscle loss. Biomaterials. 2019;206:160-169.
                                                                  doi: 10.1016/j.biomaterials.2019.03.036
            39.  Michna S, Wu W, Lewis JA. Concentrated hydroxyapatite
               inks  for  direct-write  assembly  of  3-D  periodic  scaffolds.   52.  Jeon O, Lee YB, Jeong H, Lee SJ, Wells D, Alsberg E. Individual
               Biomaterials. 2005;26(28):5632-5639.               cell-only bioink and photocurable supporting medium
               doi: 10.1016/j.biomaterials.2005.02.040            for 3D printing and generation of engineered tissues with
                                                                  complex geometries. Mater Horiz. 2019;6(8):1625-1631.
            40.  Zhang T, Yan KC, Ouyang L, Sun W. Mechanical      doi: 10.1039/c9mh00375d
               characterization of bioprinted in vitro soft tissue models.
               Biofabrication. 2013;5(4):045010.               53.  Ouyang L. Pushing the rheological and mechanical
               doi: 10.1088/1758-5082/5/4/045010                  boundaries of extrusion-based 3D bioprinting.  Trends
                                                                  Biotechnol. 2022;40(7):P891-902.
            41.  Gao G, He Y, Fu J-z, Liu A, Ma L. Coaxial nozzle-assisted      doi: 10.1016/j.tibtech.2022.01.001
               3D bioprinting with built-in microchannels for nutrients
               delivery. Biomaterials. 2015;61:203-215.        54.  Siacor FDC, Chen Q, Zhao JY, et al. On the additive
               doi: 10.1016/j.biomaterials.2015.05.031            manufacturing (3D printing) of viscoelastic materials and
                                                                  flow behavior: from composites to food manufacturing.
            42.  Ozbolat IT, Peng W, Ozbolat V. Application areas of 3D   Addit Manuf. 2021;45:102043.
               bioprinting. Drug Discov Today. 2016;21(8):1257-1271.      doi: 10.1016/j.addma.2021.102043
               doi: 10.1016/j.drudis.2016.04.006
                                                               55.  Golzar H, Wu Y, Ganguly S, Tang XS. Micro-extrusion 3D
            43.  Jia  W, Gungor-Ozkerim  PS, Zhang  YS, et  al. Direct 3D   printing of articular cartilage substitutes with a multizonal
               bioprinting of perfusable vascular constructs using a blend   structure using hydrophilic and rapidly curing silicone-
               bioink. Biomaterials. 2016;106:58-68.              based ink materials. Addit Manuf. 2023;73:103691.
               doi: 10.1016/j.biomaterials.2016.07.038
                                                                  doi: 10.1016/j.addma.2023.103691
            44.  Florczyk SJ, Simon MH, Juba D, et al. A bioinformatics 3D   56.  Dealy J, Tee T, Petersen J. A concentric-cylinder rheometer
               cellular morphotyping strategy for assessing biomaterial   for polymer melts. In: Vallet G, Meskat W, eds. Rheological
               scaffold niches. ACS Biomater Sci Eng. 2017;3(10):2302-2313.   Theories Measuring Techniques in Rheology Test Methods in
               doi: 10.1021/acsbiomaterials.7b00473
                                                                  Rheology Fractures Rheological Properties of Materials Rheo-
            45.  Skylar-Scott MA, Uzel SG, Nam LL, et al. Biomanufacturing   Optics Biorheology. Heidelberg: Steinkopff; 1975:466-474.
               of organ-specific tissues with high cellular density      doi: 10.1007/978-3-662-41458-3_69


            Volume 10 Issue 2 (2024)                       100                                doi: 10.36922/ijb.1637
   103   104   105   106   107   108   109   110   111   112   113