Page 111 - IJB-10-2
P. 111

International Journal of Bioprinting                       3D-printed nanocomposites: Synthesis & applications




            104. Yi B, Xu Q, Liu W. An overview of substrate stiffness guided   116. Shin J, Lee Y, Li Z, Hu J, Park SS, Kim K. Optimized 3D
               cellular response and its applications in tissue regeneration.   bioprinting technology based on machine kearning: a review
               Bioact Mater. 2022;15:82-102.                      of recent trends and advances. Micromachines. 2022;13(3):363.
               doi: 10.1016/j.bioactmat.2021.12.005               doi: 10.3390/mi13030363
            105. Xia H, Chen Q, Fang Y, et al. Directed neurite growth of rat   117. Quan Z, Wu A, Keefe M, et al. Additive manufacturing of
               dorsal root ganglion neurons and increased colocalization   multi-directional preforms for composites: opportunities
               with Schwann cells on aligned poly(methyl methacrylate)   and challenges. Mater Today. 2015;18(9):503-512.
               electrospun nanofibers. Brain Res. 2014;1565:18–27.      doi: 10.1016/j.mattod.2015.05.001
               doi: 10.1016/j.brainres.2014.04.002
                                                               118. Rajabi M, McConnell M, Cabral J, Azam Ali M. Chitosan
            106. Lu K, Qian Y, Gong J,  et al. Biofabrication of aligned   hydrogels in 3D printing for biomedical applications.
               structures that guide  cell orientation and applications in   Carbonhydr Polym. 2021;260:117768.
               tissue engineering. Bio-Des Manuf. 2021;4:258-277.      doi: 10.1016/j.carbpol.2021.117768
               doi: 10.1007/s42242-020-00104-5
                                                               119. Xu W, Molino BZ, Cheng F, et al. On low-concentration inks
            107. Shin YM, Yang HS, Chun HJ. Directional cell migration   formulated by nanocellulose assisted with gelatin methacrylate
               guide for improved tissue regeneration. Adv Exp Med Biol.   (GelMA) for 3D printing toward wound healing application.
               2020;1249:131-140.                                 ACS Appl Mater Interfaces. 2019;11(9):8838-8848.
               doi: 10.1007/978-981-15-3258-0_9                   doi: 10.1021/acsami.8b21268
            108. Ballester-Beltran J, Biggs M, Dalby MJ, Salmerón-Sánchez   120. Wang X, Zhang X, Dai X, et al. Tumor-like lung cancer
               M, Leal-Egaña A. Sensing the differences: the influence of   model based on 3D bioprinting. 3 Biotech. 2018;8(12):1-9.
               anisotropic cues on cell behavior. Front Mater. 2015;2:39.      doi: 10.1007/s13205-018-1519-1
               doi: 10.3389/fmats.2015.00039
                                                               121. Vijayavenkataraman S, Lu W, Fuh J. 3D bioprinting of
            109. Zhuo Y, Choi JS, Martin T, Yu H, Harley BA, Cunningham   skin: a state-of-the-art review on modelling, materials, and
               BT. Quantitative analysis of focal adhesion dynamics using   processes. Biofabrication. 2016;8(3):032001.
               photonic resonator outcoupler microscopy (PROM). Light      doi: 10.1088/1758-5090/8/3/032001
               Sci Appl. 2018;7(1):9.                          122. Cubo N, Garcia M, Del Canizo JF, Velasco D, Jorcano JL.
               doi: 10.1038/s41377-018-0001-5
                                                                  3D bioprinting of functional human skin: production and in
            110. Bowers DT, Brown JL. Nanofibers as bioinstructive   vivo analysis. Biofabrication. 2016;9(1):015006.
               scaffolds  capable  of  modulating  differentiation  through      doi: 10.1088/1758-5090/9/1/015006
               mechanosensitive pathways for regenerative engineering.   123. Kim BS, Gao G, Kim JY, Cho D-W. 3D cell printing of perfusable
               Regen Eng Transl Med. 2019;5:22-29.                vascularized human skin equivalent composed of epidermis,
               doi: 10.1007/s40883-018-0076-9
                                                                  dermis, and hypodermis for better structural recapitulation of
            111. Wang S, Ameli A, Shaayegan V, et al. Modelling of rod-like   native skin. Adv Healthc Mater. 2019;8(7):1801019.
               fillers’ rotation and translation near two growing cells in      doi: 10.1002/adhm.201801019
               conductive polymer composite foam processing. Polymers.   124. Pei H, Jing J, Chen Y, Guo J, Chen N. 3D printing of PVDF-
               2018;10(3):261.                                    based piezoelectric nanogenerator from programmable
               doi: 10.3390/polym10030261
                                                                  metamaterial design: Promising strategy for flexible
            112.  Volpi M, Paradiso A, Costantini M, Świȩszkowski W. Hydrogel-  electronic skin. Nano Energy. 2023;109:108303.
               based fiber biofabrication techniques for skeletal muscle tissue      doi: 10.1016/j.nanoen.2023.108303
               engineering. ACS Biomater Sci Eng. 2022;8(2):379-405.   125. Lackner F, Knechtl I, Novak M, et al. 3D-printed anisotropic
               doi: 10.1021/acsbiomaterials.1c01145
                                                                  nanofiber composites with Gradual mechanical properties.
            113. Kim WJ, Jang CH, Kim GH. A myoblast-laden collagen   Adv Mater Technol. 2023;8(10):2201708.
               bioink with fully aligned Au nanowires for  muscle-tissue      doi: 10.1002/admt.202201708
               regeneration. Nano Lett. 2019;19(12):8612-8620.   126. Markstedt K, Mantas A, Tournier I,  Ávila HM, Hägg D,
               doi: 10.1021/acs.nanolett.9b03182
                                                                  Gatenholm  P.  3D  bioprinting  human  chondrocytes  with
            114. Pardo A, Bakht SM, Gomez-Florit M, et al. Magnetically-  nanocellulose–alginate bioink for cartilage tissue engineering
               assisted 3D bioprinting of anisotropic tissue-mimetic   applications. Biomacromolecules. 2015;16(5):1489-1496.
               constructs. Adv Funct Mater. 2022;32(50):2208940.      doi: 10.1021/acs.biomac.5b00188
               doi: 10.1002/adfm.202208940
                                                               127. Rathan S, Dejob L, Schipani R, Haffner B, Möbius ME, Kelly
            115. Zhang S, Chen X, Shan M, et al. Convergence of 3D   DJ. Fiber reinforced cartilage ECM functionalized bioinks
               bioprinting and nanotechnology in tissue engineering   for functional cartilage tissue engineering.  Adv Healthc
               scaffolds. Biomimetics. 2023;8(1):94.              Mater. 2019;8(7):1801501.
               doi: 10.3390/biomimetics8010094                    doi: 10.1002/adhm.201801501


            Volume 10 Issue 2 (2024)                       103                                doi: 10.36922/ijb.1637
   106   107   108   109   110   111   112   113   114   115   116