Page 111 - IJB-10-2
P. 111
International Journal of Bioprinting 3D-printed nanocomposites: Synthesis & applications
104. Yi B, Xu Q, Liu W. An overview of substrate stiffness guided 116. Shin J, Lee Y, Li Z, Hu J, Park SS, Kim K. Optimized 3D
cellular response and its applications in tissue regeneration. bioprinting technology based on machine kearning: a review
Bioact Mater. 2022;15:82-102. of recent trends and advances. Micromachines. 2022;13(3):363.
doi: 10.1016/j.bioactmat.2021.12.005 doi: 10.3390/mi13030363
105. Xia H, Chen Q, Fang Y, et al. Directed neurite growth of rat 117. Quan Z, Wu A, Keefe M, et al. Additive manufacturing of
dorsal root ganglion neurons and increased colocalization multi-directional preforms for composites: opportunities
with Schwann cells on aligned poly(methyl methacrylate) and challenges. Mater Today. 2015;18(9):503-512.
electrospun nanofibers. Brain Res. 2014;1565:18–27. doi: 10.1016/j.mattod.2015.05.001
doi: 10.1016/j.brainres.2014.04.002
118. Rajabi M, McConnell M, Cabral J, Azam Ali M. Chitosan
106. Lu K, Qian Y, Gong J, et al. Biofabrication of aligned hydrogels in 3D printing for biomedical applications.
structures that guide cell orientation and applications in Carbonhydr Polym. 2021;260:117768.
tissue engineering. Bio-Des Manuf. 2021;4:258-277. doi: 10.1016/j.carbpol.2021.117768
doi: 10.1007/s42242-020-00104-5
119. Xu W, Molino BZ, Cheng F, et al. On low-concentration inks
107. Shin YM, Yang HS, Chun HJ. Directional cell migration formulated by nanocellulose assisted with gelatin methacrylate
guide for improved tissue regeneration. Adv Exp Med Biol. (GelMA) for 3D printing toward wound healing application.
2020;1249:131-140. ACS Appl Mater Interfaces. 2019;11(9):8838-8848.
doi: 10.1007/978-981-15-3258-0_9 doi: 10.1021/acsami.8b21268
108. Ballester-Beltran J, Biggs M, Dalby MJ, Salmerón-Sánchez 120. Wang X, Zhang X, Dai X, et al. Tumor-like lung cancer
M, Leal-Egaña A. Sensing the differences: the influence of model based on 3D bioprinting. 3 Biotech. 2018;8(12):1-9.
anisotropic cues on cell behavior. Front Mater. 2015;2:39. doi: 10.1007/s13205-018-1519-1
doi: 10.3389/fmats.2015.00039
121. Vijayavenkataraman S, Lu W, Fuh J. 3D bioprinting of
109. Zhuo Y, Choi JS, Martin T, Yu H, Harley BA, Cunningham skin: a state-of-the-art review on modelling, materials, and
BT. Quantitative analysis of focal adhesion dynamics using processes. Biofabrication. 2016;8(3):032001.
photonic resonator outcoupler microscopy (PROM). Light doi: 10.1088/1758-5090/8/3/032001
Sci Appl. 2018;7(1):9. 122. Cubo N, Garcia M, Del Canizo JF, Velasco D, Jorcano JL.
doi: 10.1038/s41377-018-0001-5
3D bioprinting of functional human skin: production and in
110. Bowers DT, Brown JL. Nanofibers as bioinstructive vivo analysis. Biofabrication. 2016;9(1):015006.
scaffolds capable of modulating differentiation through doi: 10.1088/1758-5090/9/1/015006
mechanosensitive pathways for regenerative engineering. 123. Kim BS, Gao G, Kim JY, Cho D-W. 3D cell printing of perfusable
Regen Eng Transl Med. 2019;5:22-29. vascularized human skin equivalent composed of epidermis,
doi: 10.1007/s40883-018-0076-9
dermis, and hypodermis for better structural recapitulation of
111. Wang S, Ameli A, Shaayegan V, et al. Modelling of rod-like native skin. Adv Healthc Mater. 2019;8(7):1801019.
fillers’ rotation and translation near two growing cells in doi: 10.1002/adhm.201801019
conductive polymer composite foam processing. Polymers. 124. Pei H, Jing J, Chen Y, Guo J, Chen N. 3D printing of PVDF-
2018;10(3):261. based piezoelectric nanogenerator from programmable
doi: 10.3390/polym10030261
metamaterial design: Promising strategy for flexible
112. Volpi M, Paradiso A, Costantini M, Świȩszkowski W. Hydrogel- electronic skin. Nano Energy. 2023;109:108303.
based fiber biofabrication techniques for skeletal muscle tissue doi: 10.1016/j.nanoen.2023.108303
engineering. ACS Biomater Sci Eng. 2022;8(2):379-405. 125. Lackner F, Knechtl I, Novak M, et al. 3D-printed anisotropic
doi: 10.1021/acsbiomaterials.1c01145
nanofiber composites with Gradual mechanical properties.
113. Kim WJ, Jang CH, Kim GH. A myoblast-laden collagen Adv Mater Technol. 2023;8(10):2201708.
bioink with fully aligned Au nanowires for muscle-tissue doi: 10.1002/admt.202201708
regeneration. Nano Lett. 2019;19(12):8612-8620. 126. Markstedt K, Mantas A, Tournier I, Ávila HM, Hägg D,
doi: 10.1021/acs.nanolett.9b03182
Gatenholm P. 3D bioprinting human chondrocytes with
114. Pardo A, Bakht SM, Gomez-Florit M, et al. Magnetically- nanocellulose–alginate bioink for cartilage tissue engineering
assisted 3D bioprinting of anisotropic tissue-mimetic applications. Biomacromolecules. 2015;16(5):1489-1496.
constructs. Adv Funct Mater. 2022;32(50):2208940. doi: 10.1021/acs.biomac.5b00188
doi: 10.1002/adfm.202208940
127. Rathan S, Dejob L, Schipani R, Haffner B, Möbius ME, Kelly
115. Zhang S, Chen X, Shan M, et al. Convergence of 3D DJ. Fiber reinforced cartilage ECM functionalized bioinks
bioprinting and nanotechnology in tissue engineering for functional cartilage tissue engineering. Adv Healthc
scaffolds. Biomimetics. 2023;8(1):94. Mater. 2019;8(7):1801501.
doi: 10.3390/biomimetics8010094 doi: 10.1002/adhm.201801501
Volume 10 Issue 2 (2024) 103 doi: 10.36922/ijb.1637

