Page 112 - IJB-10-2
P. 112

International Journal of Bioprinting                       3D-printed nanocomposites: Synthesis & applications




            128. Acedo  CA, de Vicente J,  González  GJ, Chocarro C. Bio-  functionalized with tricalcium phosphate, hydroxyapatite,
               inspired hydrogel composed of hyaluronic acid and alginate   bio-oss, or decellularized bone matrix. Tissue Eng Part A.
               as a potential bioink for 3D bioprinting of articular cartilage   2017;23(11-12):503-514.
               engineering constructs. Acta Biomater. 2020;106:114-123.      doi: 10.1089/ten.TEA.2016.0418
               doi: 10.1016/j.actbio.2020.01.046
                                                               139. Byambaa B, Annabi N, Yue K, et al. Bioprinted osteogenic
            129. Schipani R, Scheurer S, Florentin R, Critchley SE, Kelly DJ.   and vasculogenic patterns for engineering 3D bone tissue.
               Reinforcing  interpenetrating  network  hydrogels  with  3D   Adv Healthc Mater. 2017;6(16):1700015.
               printed polymer networks to engineer cartilage mimetic      doi: 10.1002/adhm.201700015
               composites. Biofabrication. 2020;12(3):035011.   140. Chiesa I, De Maria C, Lapomarda A, et al. Endothelial
               doi: 10.1088/1758-5090/ab8708
                                                                  cells  support  osteogenesis  in  an  in  vitro  vascularized
            130. Müller M, Öztürk E, Arlov Ø,  Gatenholm P, Zenobi-  bone model developed by 3D bioprinting.  Biofabrication.
               Wong M. Alginate sulfate–nanocellulose bioinks for   2020;12(2):025013.
               cartilage bioprinting applications.  Ann  Biomed  Eng. 2017;      doi: 10.1088/1758-5090/ab6a1d
               45:210-223.
               doi: 10.1007/s10439-016-1704-5                  141. Roy A, Saxena V, Pandey LM. 3D printing for cardiovascular
                                                                  tissue engineering: a review.  Mater Technol. 2018;33(6):
            131. Markstedt K, Mantas A, Tournier I,  Ávila HM, Hägg D,   433-442.
               Gatenholm  P.  3D  bioprinting  human  chondrocytes  with      doi: 10.1080/10667857.2018.1456616
               nanocellulose−alginate bioink for cartilage tissue engineering
               applications. Biomacromolecules. 2015;16(5):1489-1496.   142. Jin G, Li K. The electrically conductive scaffold as the
               doi: 10.1021/acs.biomac.5b00188                    skeleton of stem cell niche in regenerative medicine. Mater
                                                                  Sci Eng C. 2014;45:671-681.
            132. Sun Y, Wu Q, Zhang Y, Dai K, Wei Y. 3D-bioprinted      doi: 10.1016/j.msec.2014.06.004
               gradient-structured scaffold generates anisotropic cartilage
               with vascularization by pore-size-dependent activation of   143. Borriello A, Guarino V, Schiavo L,  Alvarez-Perez MA,
               HIF1α/FAK signaling axis. Nanomedicine. 2021;37:102426.   Ambrosio L. Optimizing PANi doped electroactive
               doi: 10.1016/j.nano.2021.102426                    substrates as patches for the regeneration of cardiac muscle.
                                                                  J Mater Sci Mater Med. 2011;22(4):1053-1062.
            133. Sun Y, You Y, Jiang W, Wang Bo, Wu Q, Dai K. 3D bioprinting      doi: 10.1007/s10856-011-4259-x
               dual-factor releasing and gradient-structured constructs
               ready to implant for anisotropic cartilage regeneration. Sci   144. Dvir T, Timko BP, Brigham MD, et al. Nanowired three-
                                                                  dimensional cardiac patches. Nat Nano. 2011;6(11):720-725.
               Adv. 2020;6(37):eaay1422.                          doi: 10.1038/nnano.2011.160
               doi: 10.1126/sciadv.aay1422
                                                               145. Liu W, Zhao L, Wang C, Zhou J. Conductive nanomaterials
            134. Idaszek J, Costantini M, Karlsen TA, et al. 3D bioprinting   for cardiac tissues engineering. Eng Regener. 2020;1:88-94.
               of hydrogel constructs with cell and material gradients for      doi: 10.1016/j.engreg.2020.09.001
               the regeneration of full-thickness chondral defect using
               a microfluidic printing head.  Biofabrication. 2019;11(4):   146. Ashtari K, Nazari H, Ko H, et al. Electrically conductive
               044101.                                            nanomaterials for cardiac tissue engineering.  Adv  Drug
               doi: 10.1088/1758-5090/ab2622                      Deliv Rev. 2019;144:162-179.
                                                                  doi: 10.1016/j.addr.2019.06.001
            135. Costantini M, Testa S, Mozetic P,  et al. Microfluidic-
               enhanced 3D bioprinting of aligned myoblast-laden   147.  Lee J, Manoharan V, Cheung L, et al. Nanoparticle-based hybrid
               hydrogels leads to functionally organized myofibers in vitro   scaffolds for deciphering the role of multimodal cues in cardiac
               and in vivo. Biomaterials. 2017;131:98-110.        tissue engineering. ACS Nano. 2019;13(11):12525-12539.
               doi: 10.1016/j.biomaterials.2017.03.026            doi: 10.1021/acsnano.9b03050
            136. Li X, Yuan Y, Liu L, et al. 3D printing of hydroxyapatite/  148. Zhu K, Shin SR, van Kempen T, et al. Gold nanocomposite
               tricalcium phosphate scaffold with hierarchical porous   bioink for printing 3D cardiac constructs. Adv Funct Mater.
               structure for bone regeneration.  Bio-Des Manuf.   2017;27(12):1605352.
               2020;3(1):15-29.                                   doi: 10.1002/adfm.201605352
               doi: 10.1007/s42242-019-00056-5
                                                               149. Tomasina C, Bodet T, Mota C, Moroni L, Camarero-
            137. Samavedi S, Whittington AR, Goldstein AS. Calcium   Espinosa S. Bioprinting vasculature: materials, cells and
               phosphate ceramics in bone tissue engineering: a review   emergent techniques. Materials. 2019;12(17):2701.
               of properties and their influence on cell behavior.  Acta      doi: 10.3390/ma12172701
               Biomater. 2013;9(9):8037-8045.                  150. Wu J, Hu C, Tang Z, Yu Q, Liu X, Chen H. Tissue-engineered
               doi: 10.1016/j.actbio.2013.06.014
                                                                  vascular grafts: balance of the four major requirements.
            138. Nyberg E, Rindone A, Dorafshar A, Grayson WL.    Colloid Interface Sci Commun. 2018;23:34-44.
               Comparison of 3D-printed poly-ɛ-caprolactone scaffolds      doi: 10.1016/j.colcom.2018.01.005


            Volume 10 Issue 2 (2024)                       104                                doi: 10.36922/ijb.1637
   107   108   109   110   111   112   113   114   115   116   117