Page 112 - IJB-10-2
P. 112
International Journal of Bioprinting 3D-printed nanocomposites: Synthesis & applications
128. Acedo CA, de Vicente J, González GJ, Chocarro C. Bio- functionalized with tricalcium phosphate, hydroxyapatite,
inspired hydrogel composed of hyaluronic acid and alginate bio-oss, or decellularized bone matrix. Tissue Eng Part A.
as a potential bioink for 3D bioprinting of articular cartilage 2017;23(11-12):503-514.
engineering constructs. Acta Biomater. 2020;106:114-123. doi: 10.1089/ten.TEA.2016.0418
doi: 10.1016/j.actbio.2020.01.046
139. Byambaa B, Annabi N, Yue K, et al. Bioprinted osteogenic
129. Schipani R, Scheurer S, Florentin R, Critchley SE, Kelly DJ. and vasculogenic patterns for engineering 3D bone tissue.
Reinforcing interpenetrating network hydrogels with 3D Adv Healthc Mater. 2017;6(16):1700015.
printed polymer networks to engineer cartilage mimetic doi: 10.1002/adhm.201700015
composites. Biofabrication. 2020;12(3):035011. 140. Chiesa I, De Maria C, Lapomarda A, et al. Endothelial
doi: 10.1088/1758-5090/ab8708
cells support osteogenesis in an in vitro vascularized
130. Müller M, Öztürk E, Arlov Ø, Gatenholm P, Zenobi- bone model developed by 3D bioprinting. Biofabrication.
Wong M. Alginate sulfate–nanocellulose bioinks for 2020;12(2):025013.
cartilage bioprinting applications. Ann Biomed Eng. 2017; doi: 10.1088/1758-5090/ab6a1d
45:210-223.
doi: 10.1007/s10439-016-1704-5 141. Roy A, Saxena V, Pandey LM. 3D printing for cardiovascular
tissue engineering: a review. Mater Technol. 2018;33(6):
131. Markstedt K, Mantas A, Tournier I, Ávila HM, Hägg D, 433-442.
Gatenholm P. 3D bioprinting human chondrocytes with doi: 10.1080/10667857.2018.1456616
nanocellulose−alginate bioink for cartilage tissue engineering
applications. Biomacromolecules. 2015;16(5):1489-1496. 142. Jin G, Li K. The electrically conductive scaffold as the
doi: 10.1021/acs.biomac.5b00188 skeleton of stem cell niche in regenerative medicine. Mater
Sci Eng C. 2014;45:671-681.
132. Sun Y, Wu Q, Zhang Y, Dai K, Wei Y. 3D-bioprinted doi: 10.1016/j.msec.2014.06.004
gradient-structured scaffold generates anisotropic cartilage
with vascularization by pore-size-dependent activation of 143. Borriello A, Guarino V, Schiavo L, Alvarez-Perez MA,
HIF1α/FAK signaling axis. Nanomedicine. 2021;37:102426. Ambrosio L. Optimizing PANi doped electroactive
doi: 10.1016/j.nano.2021.102426 substrates as patches for the regeneration of cardiac muscle.
J Mater Sci Mater Med. 2011;22(4):1053-1062.
133. Sun Y, You Y, Jiang W, Wang Bo, Wu Q, Dai K. 3D bioprinting doi: 10.1007/s10856-011-4259-x
dual-factor releasing and gradient-structured constructs
ready to implant for anisotropic cartilage regeneration. Sci 144. Dvir T, Timko BP, Brigham MD, et al. Nanowired three-
dimensional cardiac patches. Nat Nano. 2011;6(11):720-725.
Adv. 2020;6(37):eaay1422. doi: 10.1038/nnano.2011.160
doi: 10.1126/sciadv.aay1422
145. Liu W, Zhao L, Wang C, Zhou J. Conductive nanomaterials
134. Idaszek J, Costantini M, Karlsen TA, et al. 3D bioprinting for cardiac tissues engineering. Eng Regener. 2020;1:88-94.
of hydrogel constructs with cell and material gradients for doi: 10.1016/j.engreg.2020.09.001
the regeneration of full-thickness chondral defect using
a microfluidic printing head. Biofabrication. 2019;11(4): 146. Ashtari K, Nazari H, Ko H, et al. Electrically conductive
044101. nanomaterials for cardiac tissue engineering. Adv Drug
doi: 10.1088/1758-5090/ab2622 Deliv Rev. 2019;144:162-179.
doi: 10.1016/j.addr.2019.06.001
135. Costantini M, Testa S, Mozetic P, et al. Microfluidic-
enhanced 3D bioprinting of aligned myoblast-laden 147. Lee J, Manoharan V, Cheung L, et al. Nanoparticle-based hybrid
hydrogels leads to functionally organized myofibers in vitro scaffolds for deciphering the role of multimodal cues in cardiac
and in vivo. Biomaterials. 2017;131:98-110. tissue engineering. ACS Nano. 2019;13(11):12525-12539.
doi: 10.1016/j.biomaterials.2017.03.026 doi: 10.1021/acsnano.9b03050
136. Li X, Yuan Y, Liu L, et al. 3D printing of hydroxyapatite/ 148. Zhu K, Shin SR, van Kempen T, et al. Gold nanocomposite
tricalcium phosphate scaffold with hierarchical porous bioink for printing 3D cardiac constructs. Adv Funct Mater.
structure for bone regeneration. Bio-Des Manuf. 2017;27(12):1605352.
2020;3(1):15-29. doi: 10.1002/adfm.201605352
doi: 10.1007/s42242-019-00056-5
149. Tomasina C, Bodet T, Mota C, Moroni L, Camarero-
137. Samavedi S, Whittington AR, Goldstein AS. Calcium Espinosa S. Bioprinting vasculature: materials, cells and
phosphate ceramics in bone tissue engineering: a review emergent techniques. Materials. 2019;12(17):2701.
of properties and their influence on cell behavior. Acta doi: 10.3390/ma12172701
Biomater. 2013;9(9):8037-8045. 150. Wu J, Hu C, Tang Z, Yu Q, Liu X, Chen H. Tissue-engineered
doi: 10.1016/j.actbio.2013.06.014
vascular grafts: balance of the four major requirements.
138. Nyberg E, Rindone A, Dorafshar A, Grayson WL. Colloid Interface Sci Commun. 2018;23:34-44.
Comparison of 3D-printed poly-ɛ-caprolactone scaffolds doi: 10.1016/j.colcom.2018.01.005
Volume 10 Issue 2 (2024) 104 doi: 10.36922/ijb.1637

