Page 113 - IJB-10-2
P. 113

International Journal of Bioprinting                       3D-printed nanocomposites: Synthesis & applications




            151. Moroni L, Burdick JA, Highley C, et al. Biofabrication   163. Wu Y, Lin ZYW, Wenger AC, Tam KC, Tang XS. 3D
               strategies for 3D in vitro models and regenerative medicine.   bioprinting  of  liver-mimetic  construct  with  alginate/
               Nat Rev Mater. 2018;3(5):21-37.                    cellulose nanocrystal hybrid bioink. Bioprinting. 2018;9:1-6.
               doi: 10.1038/s41578-018-0006-y                     doi: 10.1016/j.bprint.2017.12.001
            152. Piterina AV, Cloonan AJ, Meaney CL, et al. ECM-based   164. Wu Y, Wenger A, Golzar H,  Tang  XS. 3D bioprinting  of
               materials in cardiovascular applications: inherent healing   bicellular liver lobule-mimetic structures via microextrusion
               potential and augmentation of native regenerative processes.   of cellulose nanocrystal-incorporated shear-thinning
               Int J Mol Sci. 2009;10(10):4375-4417.              bioink. Sci Rep. 2020;10(1):1-12.
               doi: 10.3390/ijms10104375                          doi: 10.1038/s41598-020-77146-3
            153. Heinrich MA, Liu W, Jimenez A, et al. 3D bioprinting:   165. Nguyen DG, Funk J, Robbins JB, et al. Bioprinted 3D
               from benches to translational applications.  Small.   primary liver tissues allow assessment of organ-level
               2019;15(23):1970126.                               response to clinical drug induced toxicity in vitro. PLoS One.
               doi: 10.1002/smll.201805510                        2016;11(7):e0158674.
                                                                  doi: 10.1371/journal.pone.0158674
            154. Sasmal P, Datta P, Wu Y, Ozbolat IT. 3D bioprinting for
               modeling vasculature. Microphysiol Syst. 2018;2:4.   166. Zhuang P, An J, Chua CK, Tan LP. Bioprinting of 3D
               doi: 10.21037/mps.2018.10.02                       in vitro skeletal muscle models: a review.  Mater Des.
                                                                  2020;193:108794.
            155. Lee J, Kim G. Three-dimensional hierarchical nanofibrous
               collagen scaffold fabricated using fibrillated collagen and      doi: 10.1016/j.matdes.2020.108794
               pluronic F-127 for regenerating bone tissue. ACS Appl Mater   167. Fan T, Wang S, Jiang Z, et al. Controllable assembly of skeletal
               Interfaces. 2018;10(42):35801-35811.               muscle-like bundles through 3D bioprinting. Biofabrication.
               doi: 10.1021/acsami.8b14088                        2021;14(1):015009.
                                                                  doi: 10.1088/1758-5090/ac3aca
            156. Gao Q, Liu Z, Lin Z, et al. 3D bioprinting of vessel-like
               structures with multilevel fluidic channels.  ACS Biomater   168. Choi YJ, Kim TG, Jeong J,  et  al., 2016, 3D cell printing
               Sci Eng. 2017;3(3):399-408.                        of functional skeletal muscle constructs using skeletal
               doi: 10.1021/acsbiomaterials.6b00643               muscle-derived bioink.  Adv Healthc Mater. 2016;5(20):
                                                                  2636-2645.
            157. Gao G, Park JY, Kim BS, Jang J, Cho D-W. Coaxial cell printing
               of freestanding, perfusable, and functional in vitro vascular      doi: 10.1002/adhm.201600483
               models for recapitulation of native vascular endothelium   169. Ma X, Wang M, Ran Y, et al. Design and fabrication of
               pathophysiology. Adv Healthc Mater. 2018;7(23):1801102.   polymeric hydrogel carrier for nerve repair.  Polymers.
               doi: 10.1002/adhm.201801102                        2022;14(8):1549.
                                                                  doi: 10.3390/polym14081549
            158. Dolati F, Yu Y, Zhang Y, De Jesus AM, Sander EA,
               Ozbolat IT. In vitro evaluation of carbon-nanotube-  170. Lozano R, Stevens L, Thompson BC, et al. 3D printing of
               reinforced bioprintable vascular conduits. Nanotechnology.   layered brain-like structures using peptide modified gellan
               2014;25(14):145101.                                gum substrates. Biomaterials. 2015;67:264-273.
               doi: 10.1088/0957-4484/25/14/145101                doi: 10.1016/j.biomaterials.2015.07.022
            159. Zhang Y, Yu Y, Dolati F, Ozbolat IT. Effect of multiwall carbon   171. Yu  X, Zhang T, Li  Y. 3D  printing  and bioprinting
               nanotube reinforcement on coaxially extruded cellular   nerve conduits for neural tissue engineering.  Polymers.
               vascular conduits. Mater Sci Eng C. 2014;39:126-133.   2020;12(8):1637.
               doi: 10.1016/j.msec.2014.02.036                    doi: 10.3390/polym12081637
            160. Shao L, Gao Q, Xie C, Fu J, Xiang M, He Y. Directly coaxial   172. Balasubramanian S, Yu K, Meyer AS, Karana E, Aubin-
               3D bioprinting of large-scale vascularized tissue constructs.   Tam M-E. Bioprinting of regenerative photosynthetic living
               Biofabrication. 2020;12(3):035014.                 materials. Adv Func Mater. 2021;31(31):2011162.
               doi: 10.1088/1758-5090/ab7e76                      doi: 10.1002/adfm.202011162

            161. Li S, Liu Y, Li Y, Liu C, Sun Y, Hu Q. A novel method for   173. Zhang Y, Hsu H-H, Wheeler JJ, Tanga S, Jiang X. Emerging
               fabricating engineered structures with branched micro-  investigator series: emerging biotechnologies in wastewater
               channel using hollow hydrogel fibers.  Biomicrofluidics.   treatment: from biomolecular engineering to multiscale
               2016;10(6):064104.                                 integration.  Environ Sci: Water Res Technol. 2020;6(8):
               doi: 10.1063/1.4967456                             1967-1985.
                                                                  doi: 10.1039/D0EW00393J
            162. Wu Y, Chee AJ, Golzar H, Yu ACH, Tang XS. Embedded 3D
               printing of ultrasound-compatible arterial phantoms with   174. Hsu L, Jiang X. ‘Living’ inks for 3D bioprinting.  Trends
               biomimetic elasticity. Adv Funct Mater. 2022;32:2110153.   Biotechnol. 2019;37(8):795-796.
               doi: 10.1002/adfm.202110153                        doi: 10.1016/j.tibtech.2019.04.014


            Volume 10 Issue 2 (2024)                       105                                doi: 10.36922/ijb.1637
   108   109   110   111   112   113   114   115   116   117   118