Page 337 - IJB-10-2
P. 337

International Journal of Bioprinting                                Continuous gradient TPMS bone scaffold




            13.  Jones A, Leary M, Bateman S, Easton M. Parametric design   materials: application to periodic arrays of spheres and
               and evaluation of TPMS-like cellular solids.  Mater Des.   3D scaffold microstructures.  Int J Numer Methods Eng.
               2022;221:110908.                                   2019;118(13):783-803.
               doi: 10.1016/j.matdes.2022.110908                  doi: 10.1002/nme.6037
            14.  Yang W, An J, Chua CK, Zhou K. Acoustic absorptions of   25.  Pennella F, Cerino G, Massai D, et al. A survey of methods
               multifunctional polymeric cellular structures based on triply   for the evaluation of tissue engineering scaffold permeability.
               periodic minimal surfaces fabricated by stereolithography.   Ann Biomed Eng. 2013;41(10):2027-2041.
               Virtual Phys Prototyp. 2020;15(2):242-249.         doi: 10.1007/s10439-013-0815-5
               doi: 10.1080/17452759.2020.1740747
                                                               26.  Montazerian H, Davoodi E, Asadi-Eydivand M,
            15.  Hu J, Wang S, Li B, Li F, Luo Z, Liu L. Efficient representation   Kadkhodapour J, Solati-Hashjin M. Porous scaffold
               and optimization for TPMS-based porous structures. IEEE   internal  architecture design based on minimal surfaces:  a
               Trans Vis Comput Graph. 2022;28(7):2615-2627.      compromise  between  permeability  and  elastic  properties.
               doi: 10.1109/TVCG.2020.3037697                     Mater Des. 2017;126:98-114.
            16.  Sychov MM,  Lebedev  LA, Dyachenko SV, Nefedova  LA.      doi: 10.1016/j.matdes.2017.04.009
               Mechanical properties of energy-absorbing structures with   27.  Ma S, Tang Q, Feng Q, Song J, Han X, Guo F. Mechanical
               triply periodic minimal surface  topology.  Acta Astronaut.   behaviours and  mass  transport properties  of  bone-
               2018;150:81-84.                                    mimicking scaffolds consisted of gyroid structures
               doi: 10.1016/j.actaastro.2017.12.034               manufactured using selective laser melting.  J Mech Behav
                                                                  Biomed Mater. 2019;93:158-169
            17.  Yan C, Hao L, Hussein A, Bubb SL, Young P, Raymont D.      doi: 10.1016/j.jmbbm.2019.01.023
               Evaluation of light-weight AlSi10Mg periodic cellular lattice
               structures fabricated via direct metal laser sintering. J Mater   28.  Asbai-Ghoudan R, Ruiz de Galarreta S, Rodriguez-Florez N.
               Process Technol. 2014;214(4):856-864.              Analytical model for the prediction of permeability of triply
               doi: 10.1016/j.jmatprotec.2013.12.004              periodic  minimal  surfaces.  J Mech Behav BiomedMater.
                                                                  2021;124:104804.
            18.  Yan  C,  Hao  L,  Hussein  A,  Young  P.  Ti–6Al–4V  triply
               periodic minimal surface structures for bone implants      doi: 10.1016/j.jmbbm.2021.104804
               fabricated via selective laser melting. J Mech Behav Biomed   29.  Montazerian H, Mohamed MGA, Montazeri MM, et al.
               Mater. 2015;51:61-73.                              Permeability and mechanical properties of gradient
               doi: 10.1016/j.jmbbm.2015.06.024                   porous PDMS scaffolds fabricated by 3D-printed sacrificial
            19.  Yan C, Hao L, Hussein A, Young P, Huang J, Zhu W.   templates designed with minimal surfaces. Acta Biomater.
               Microstructure and mechanical properties of aluminium   2019;96:149-160.
               alloy cellular lattice structures manufactured by direct metal      doi: 10.1016/j.actbio.2019.06.040
               laser sintering. Mater Sci Eng A. 2015;628:238-246.   30.  Varley MC, Neelakantan S, Clyne TW, Dean J, Brooks RA,
               doi: 10.1016/j.msea.2015.01.063                    Markaki AE. Cell structure, stiffness and permeability of
            20.  Nian Y, Wan S, Avcar M, Yue R, Li M. 3D printing   freeze-dried collagen scaffolds in dry and hydrated states.
               functionally graded metamaterial  structure:  design,   Acta Biomater. 2016;33:166-175.
               fabrication, reinforcement, optimization.  Int J Mech Sci.      doi: 10.1016/j.actbio.2016.01.041
               2023;258:108580.                                31.  Al-Ketan O, Abu Al-Rub RK. Multifunctional mechanical
               doi: 10.1016/j.ijmecsci.2023.108580                metamaterials based on triply periodic minimal surface
            21.  Murshid SA. Bone permeability and mechanotransduction:   lattices. Adv Eng Mater. 2019;21(10):1900524.
               some current insights into the function of the lacunar-     doi: 10.1002/adem.201900524
               canalicular network. Tissue Cell. 2022;75:101730.   32.  Rajagopalan S, Robb RA. Schwarz meets Schwann: Design
               doi: 10.1016/j.tice.2022.101730                    and fabrication of biomorphic and durataxic tissue
            22.  Akbar I, Prakoso A, Astrada Y, et al. Permeability study of   engineering scaffolds. Med Image Anal. 2006;10(5):693-712.
               functionally graded scaffold based on morphology of cancellous      doi: 10.1016/j.media.2006.06.001
               bone. Malays J Med Health Sci. 2021;17(SUPP13):60-66.   33.  Yan X, Rao C, Lu L, Sharf A, Zhao H, Chen B. Strong 3D
            23.  Zhang X, Jiang L, Yan X, Wang Z, Li X, Fang G. Revealing the   printing by TPMS injection. IEEE Trans Vis Comput Graph.
               apparent and local mechanical properties of heterogeneous   2020;26(10):3037-3050.
               lattice: a multi-scale study of functionally graded scaffold.      doi: 10.1109/TVCG.2019.2914044
               Virtual Phys Prototyp. 2023;18(1):e2120406.     34.  Hu B, Wang Z, Du C, et al. Multi-objective Bayesian
               doi: 10.1080/17452759.2022.2120406
                                                                  optimization accelerated design of TPMS structures.  Int J
            24.  Daish C, Blanchard R, Pirogova E, Harvie DJE, Pivonka P.   Mech Sci. 2023;244:108085.
               Numerical calculation of permeability of periodic porous      doi: 10.1016/j.ijmecsci.2022.108085


            Volume 10 Issue 2 (2024)                       329                                doi: 10.36922/ijb.2306
   332   333   334   335   336   337   338   339   340   341   342