Page 482 - IJB-10-2
P. 482
International Journal of Bioprinting Bioprinting with ASCs and bioactive glass
doi: 10.1007/s11837-009-0132-5 33. Bourin P, Bunnell BA, Casteilla L, et al. Stromal cells from
the adipose tissue-derived stromal vascular fraction and
22. Liu X, Rahaman MN, Day DE. Conversion of melt-derived
microfibrous borate (13-93B3) and silicate (45S5) bioactive culture expanded adipose tissue-derived stromal/stem cells:
glass in a simulated body fluid. J Mater Sci Mater Med. a joint statement of the International Federation for Adipose
2013;24(3):583-595. Therapeutics and Science (IFATS) and the International
doi: 10.1007/s10856-012-4831-z Society for Cellular Therapy (ISCT). Cytotherapy.
2013;15(6):641-648.
23. Zhao F, Yang Z, Xiong H, Yan Y, Chen X, Shao L. A bioactive doi: 10.1016/j.jcyt.2013.02.006
glass functional hydrogel enhances bone augmentation via
synergistic angiogenesis, self-swelling and osteogenesis. 34. Kolan KCR, Semon JA, Bindbeutel AT, Day DE, Leu MC.
Bioact Mater. 2023;22:201-210. Bioprinting with bioactive glass loaded polylactic acid
doi: 10.1016/j.bioactmat.2022.09.007 composite and human adipose stem cells. Bioprinting.
2020;18:e00075.
24. Zhu H, Monavari M, Zheng K, et al. 3D bioprinting doi: 10.1016/j.bprint.2020.e00075
of multifunctional dynamic nanocomposite bioinks
incorporating Cu-doped mesoporous bioactive glass 35. Thyparambil NJ, Gutgesell LC, Hurley CC, Flowers LE, Day
nanoparticles for bone tissue engineering. Small. DE, Semon JA. Adult stem cell response to doped bioactive
2022;18(12):2104996. borate glass. J Mater Sci Mater Med. 2020;31(2):1-8.
doi: 10.1002/smll.202104996 doi: 10.1007/s10856-019-6353-4
25. Monavari M, Homaeigohar S, Medhekar R, et al. A 36. Suvarnapathaki S, Nguyen MA, Wu X, Nukavarapu
3D-printed wound-healing material composed of alginate SP, Camci-Unal G. Synthesis and characterization of
dialdehyde-gelatin incorporating astaxanthin and borate photocrosslinkable hydrogels from bovine skin gelatin. RSC
bioactive glass microparticles. ACS Appl Mater Interfaces. Adv. 2019;9:13016-13025.
2023;15(44):50626-50637. doi: 10.1039/c9ra00655a
doi: 10.1021/acsami.2c23252 37. Okay O. General Properties of Hydrogels. Berlin, Heidelberg:
26. Kolan KCR, Semon JA, Bromet B, Day DE, Leu MC. Springer; 2009:1-14.
Bioprinting with human stem cells-laden alginate-gelatin doi: 10.1007/978-3-540-75645-3_1
bioink and bioactive glass for tissue engineering. Int J 38. Jung S, Day D. Conversion kinetics of silicate, borosilicate,
Bioprint. 2019;5(2.2):3. and borate bioactive glasses to hydroxyapatite. Phys Chem
doi: 10.18063/ijb.v5i2.2.204 Glas. 2009;50(2):85-88.
27. Jung SB. Borate based bioactive glass scaffolds for hard and 39. Liu X, Pan H, Fu H, Fu Q, Rahaman MN, Huang W.
soft tissue engineering. Zhurnal Eksp i Teor Fiz. 2010;389. Conversion of borate-based glass scaffold to hydroxyapatite
28. Watters R, Brown R, Day D. Angiogenic effect of bioactive in a dilute phosphate solution. Biomed Mater.
borate glass microfibers and beads in the hairless mouse. 2010;5(1):015005.
Bioact Glas. 2015;1(1). doi: 10.1088/1748-6041/5/1/015005
doi: 10.1515/bglass-2015-0017 40. George JL, Brow RK. In-situ characterization of borate glass
29. Lin Y, Brown RF, Jung SB, Day DE. Angiogenic effects of dissolution kinetics by μ-Raman spectroscopy. J Non Cryst
borate glass microfibers in a rodent model. J Biomed Mater Solids. 2015;426:116-124.
Res Part A. 2014;102(12):4491-4499. doi: 10.1016/J.JNONCRYSOL.2015.07.003
doi: 10.1002/jbm.a.35120 41. Fu Q, Rahaman MN, Fu H, Liu X. Silicate, borosilicate,
30. Thyparambil N, Gutgesell L, Bromet B, et al. Bioactive and borate bioactive glass scaffolds with controllable
borate glass triggers phenotypic changes in adipose stem degradation rate for bone tissue engineering applications. I.
cells. J Mater Sci Mater Med. 2020;31(4):35. Preparation and in vitro degradation. J Biomed Mater Res
doi: 10.1007/s10856-020-06366-w Part A. 2010;95A(1):164-171.
doi: 10.1002/jbm.a.32824
31. Dykstra JA, Facile T, Patrick RJ, et al. Concise review: fat
and furious: harnessing the full potential of adipose- 42. Huebsch N, Arany PR, Mao AS, et al. Harnessing traction-
derived stromal vascular fraction. Stem Cells Transl Med. mediated manipulation of the cell/matrix interface to
2017;6(4):1096-1108. control stem-cell fate. Nat Mater. 2010;9(6):518-526.
doi: 10.1002/sctm.16-0337 doi: 10.1038/nmat2732
32. Gimble JM, Guilak F, Bunnell BA. Clinical and preclinical 43. Chaudhuri O, Gu L, Klumpers D, et al. Hydrogels with
translation of cell-based therapies using adipose tissue- tunable stress relaxation regulate stem cell fate and activity.
derived cells. Stem Cell Res Ther. 2010;1(2):19. Nat Mater. 2016;15(3):326-334.
doi: 10.1186/scrt19 doi: 10.1038/nmat4489
Volume 10 Issue 2 (2024) 474 doi. 10.36922/ijb.2057

