Page 482 - IJB-10-2
P. 482

International Journal of Bioprinting                                Bioprinting with ASCs and bioactive glass




               doi: 10.1007/s11837-009-0132-5                  33.   Bourin P, Bunnell BA, Casteilla L, et al. Stromal cells from
                                                                  the adipose tissue-derived stromal vascular fraction and
            22.   Liu X, Rahaman MN, Day DE. Conversion of melt-derived
               microfibrous borate (13-93B3) and silicate (45S5) bioactive   culture expanded adipose tissue-derived stromal/stem cells:
               glass in a simulated body fluid.  J Mater Sci Mater Med.   a joint statement of  the International Federation for Adipose
               2013;24(3):583-595.                                Therapeutics and Science (IFATS) and the  International
               doi: 10.1007/s10856-012-4831-z                     Society for Cellular Therapy  (ISCT).  Cytotherapy.
                                                                  2013;15(6):641-648.
            23.   Zhao F, Yang Z, Xiong H, Yan Y, Chen X, Shao L. A bioactive      doi: 10.1016/j.jcyt.2013.02.006
               glass functional hydrogel enhances bone augmentation via
               synergistic angiogenesis, self-swelling and osteogenesis.   34.   Kolan KCR, Semon JA, Bindbeutel AT, Day DE, Leu MC.
               Bioact Mater. 2023;22:201-210.                     Bioprinting with bioactive glass loaded polylactic acid
               doi: 10.1016/j.bioactmat.2022.09.007               composite  and  human adipose  stem  cells.  Bioprinting.
                                                                  2020;18:e00075.
            24.   Zhu H, Monavari M, Zheng K, et al. 3D bioprinting      doi: 10.1016/j.bprint.2020.e00075
               of  multifunctional  dynamic  nanocomposite  bioinks
               incorporating  Cu-doped  mesoporous  bioactive  glass   35.   Thyparambil NJ, Gutgesell LC, Hurley CC, Flowers LE, Day
               nanoparticles for bone tissue engineering.  Small.   DE, Semon JA. Adult stem cell response to doped bioactive
               2022;18(12):2104996.                               borate glass. J Mater Sci Mater Med. 2020;31(2):1-8.
               doi: 10.1002/smll.202104996                        doi: 10.1007/s10856-019-6353-4
            25.   Monavari M, Homaeigohar S, Medhekar R, et al. A   36.   Suvarnapathaki S, Nguyen MA, Wu X, Nukavarapu
               3D-printed  wound-healing  material  composed  of  alginate   SP, Camci-Unal G. Synthesis and characterization of
               dialdehyde-gelatin  incorporating  astaxanthin  and  borate   photocrosslinkable hydrogels from bovine skin gelatin. RSC
               bioactive glass microparticles.  ACS Appl Mater Interfaces.   Adv. 2019;9:13016-13025.
               2023;15(44):50626-50637.                           doi: 10.1039/c9ra00655a
               doi: 10.1021/acsami.2c23252                     37.   Okay O. General Properties of Hydrogels. Berlin, Heidelberg:
            26.   Kolan KCR, Semon JA, Bromet B, Day DE, Leu MC.   Springer; 2009:1-14.
               Bioprinting with human stem cells-laden alginate-gelatin      doi: 10.1007/978-3-540-75645-3_1
               bioink and bioactive glass for tissue engineering.  Int J   38.   Jung S, Day D. Conversion kinetics of silicate, borosilicate,
               Bioprint. 2019;5(2.2):3.                           and borate bioactive glasses to hydroxyapatite. Phys Chem
               doi: 10.18063/ijb.v5i2.2.204                       Glas. 2009;50(2):85-88.
            27.   Jung SB. Borate based bioactive glass scaffolds for hard and   39.   Liu X, Pan H, Fu H, Fu Q, Rahaman MN, Huang W.
               soft tissue engineering. Zhurnal Eksp i Teor Fiz. 2010;389.   Conversion of borate-based glass scaffold to hydroxyapatite
            28.   Watters R, Brown R, Day D. Angiogenic effect of bioactive   in a dilute phosphate solution.  Biomed  Mater.
               borate  glass microfibers  and  beads  in  the  hairless  mouse.   2010;5(1):015005.
               Bioact Glas. 2015;1(1).                            doi: 10.1088/1748-6041/5/1/015005
               doi: 10.1515/bglass-2015-0017                   40.   George JL, Brow RK. In-situ characterization of borate glass
            29.   Lin Y, Brown RF, Jung SB, Day DE. Angiogenic effects of   dissolution kinetics by μ-Raman spectroscopy. J Non Cryst
               borate glass microfibers in a rodent model. J Biomed Mater   Solids. 2015;426:116-124.
               Res Part A. 2014;102(12):4491-4499.                doi: 10.1016/J.JNONCRYSOL.2015.07.003
               doi: 10.1002/jbm.a.35120                        41.   Fu  Q,  Rahaman  MN,  Fu  H,  Liu  X.  Silicate,  borosilicate,
            30.   Thyparambil N, Gutgesell L, Bromet B, et al. Bioactive   and borate bioactive glass scaffolds with controllable
               borate glass triggers phenotypic changes in adipose stem   degradation rate for bone tissue engineering applications. I.
               cells. J Mater Sci Mater Med. 2020;31(4):35.       Preparation and in vitro degradation. J Biomed Mater Res
               doi: 10.1007/s10856-020-06366-w                    Part A. 2010;95A(1):164-171.
                                                                  doi: 10.1002/jbm.a.32824
            31.   Dykstra JA, Facile T, Patrick RJ, et al. Concise review: fat
               and furious:  harnessing the  full potential of adipose-  42.   Huebsch N, Arany PR, Mao AS, et al. Harnessing traction-
               derived stromal vascular fraction.  Stem Cells Transl Med.   mediated manipulation  of the  cell/matrix  interface  to
               2017;6(4):1096-1108.                               control stem-cell fate. Nat Mater. 2010;9(6):518-526.
               doi: 10.1002/sctm.16-0337                          doi: 10.1038/nmat2732
            32.   Gimble JM, Guilak F, Bunnell BA. Clinical and preclinical   43.   Chaudhuri O, Gu L, Klumpers D, et al. Hydrogels with
               translation of cell-based therapies using adipose tissue-  tunable stress relaxation regulate stem cell fate and activity.
               derived cells. Stem Cell Res Ther. 2010;1(2):19.   Nat Mater. 2016;15(3):326-334.
               doi: 10.1186/scrt19                                doi: 10.1038/nmat4489




            Volume 10 Issue 2 (2024)                       474                                doi. 10.36922/ijb.2057
   477   478   479   480   481   482   483   484   485   486   487