Page 43 - IJB-3-1
P. 43

Hyeong-jin Lee, Young Won Koo, Miji Yeo, et al.

                 ble  mammalian  cells,  Biomaterials,  vol.26(1):  93–99.   vol.98(1): 160±170.
                 https://doi.org/10.1016/j.biomaterials.2004.04.011   https://doi.org/10.1002/jbm.b.31831
              25.  Moon S, Hasan K, Song S, et al.  2010, Layer by layer   36.  Ahn  S,  Lee  H,  Bonassar  LJ,  et  al.  2012,  Cells
                 three-dimensional  tissue  epitaxy  by  cell-laden  hydrogel   (MC3T3-E1)-Oaden  Dlginate  Vcaffolds  Iabricated  by  a
                 droplets, Tissue Engineering Part C: Methods, vol.16(1):   Podified  Volid-Ireeform  Iabrication  Srocess  Vupple-
                 157–166.                                          mented  with  an  Derosol  Vpraying,  Biomacromolecules,
                 https://doi.org/10.1089/ten.tec.2009.0179         vol.13(9): 2997±3003.
              26.  Xu T, Zhao W, Zhu J, 2013, Complex heterogeneous tis-  https://doi.org/10.1021/bm3011352
                 sue constructs containing multiple cell types prepared by   37.  Ahn  S,  Lee  H,  Puetzer  J,  et  al.  2012,  Fabrication  of
                 inkjet printing technology, Biomaterials, vol.34(1): 130–   cell-laden  three-dimensional  alginate-scaffolds  with  an
                 139.                                              aerosol cross-linking process, Journal of Materials Che-
                 https://doi.org/10.1016/j.biomaterials.2012.09.035   mistry, vol.22(36): 18735±18740.
              27.  Calvert P, 2001, Inkjet printing for materials and devices,   https://doi.org/10.1039/c2jm33749e
                 Chemistry of Materials, vol.13(10): 3299–3305.     38.  Ahn S, Lee H, Kim G, 2013, Functional cell-laden algi-
                 https://doi.org/10.1021/cm0101632                 nate scaffolds consisting of core/shell struts for tissue re-
              28.  Knowlton S, Onal S, Yu CH, et al. 2015, Bioprinting for   generation, Carbohydrate Polymers, vol.98(1): 936±942.
                 cancer  research,  Trends  in  Biotechnology,  vol.33(9):   https://doi.org/10.1016/j.carbpol.2013.07.008
                 504±513. https://doi.org/10.1016/j.tibtech.2015.06.007   39.  Xu T, Jalota S, Manley B, et al. 2005, Drop-on Demand
              29.  Ozbolat I, Yu Y, 2013, Bioprinting toward organ fabrica-  Printing of Cell and Materials for Designer Hybrid Car-
                 tion: challenges and future trends, IEEE Transactions on   diovascular  Biomaterials,  Society  for  Imaging  Science
                 Biomedical Engineering, vol.60(3): 691–699.       and  Technology, NIP &  Digital Fabrication  Conference,
                 https://doi.org/10.1109/TBME.2013.2243912         178±178
              30.  Nair  K,  Yan  K,  Sun  W,  2007,  A  multi-level  numerical   40.  Boland  T,  Tao  X,  Damon  BJ,  et  al.  2007,  Drop-on-de-
                 model  for quna tifying  cell  deformation  in  encapsulated   mand  printing  of  cells  and  materials  for  designer  tissue
                 alginate  structures,  Joruanl  of  Mechanics  of  Materials   constructs,  Materials  Science  and E ngineering:  C,
                 and Structures  YRO 2(6): 1121–1139.              vol.27(3): 372±376.
                 https://doi.org/10.2140/jomms.2007.2.1121         https://doi.org/10.1016/j.msec.2006.05.047
              31.  Shim J, Lee J, Kim J, et al. 2012, Bioprinting of a me-  41.  Xiong  R,  Zhang  Z,  Chai  W,  et  al.  2015,  Freeform
                 chanically  enhanced  three-dimensional  dual  cell-laden   drop-on-demand laser printing of 3D alginate and cellular
                 construct  for os teochondral  tissue  engineering  using  a   constructs, Biofabrication, vol.7(4): 045011.
                 multi-head tissue/organ  building system, Journal of Mi-  https://doi.org/10.1088/1758-5090/7/4/045011
                 cromechanics and Microengineering, vol.22(8): 085014.     42.  You F, Wu X, Zhu N, et al. 2016, 3D Srinting of Sorous
                 https://doi.org/10.1088/0960-1317/22/8/085014     Fell-Oaden  Kydrogel  Fonstructs  for  Sotential  DpplicaWLRQ
              32.  Yu Y, Zhang, Y, Martin J, et al. 2013, Evaluation of cell   in Fartilage Wissue Hngineering, ACS Biomaterials Science
                 viability  and  functionality  in  vessel-like  bioprintable   & Engineering, vol.2(7): 1200±1210.
                 cell-laden  tubular  channels,  Journal  of  Biomechanical   https://doi.org/10.1021/acsbiomaterials.6b00258
                 Engineering, vol.135(9): 091011.               43.  Gao Q, He Y, Fu J-z, et al. 2015, Coaxial nozzle-assisted
                 https://doi.org/10.1115/1.4024575                 3D bioprinting with built-in microchannels for nutrients
              33.  Tirella A, Vozzi F, Vozzi G. 2011, PAM2 (Piston Assisted   delivery, Biomaterials, vol.61: 203±215.
                 Microsyringe): A Qew Uapid  Srototyping Wechnique  for   https://doi.org/10.1016/j.biomaterials.2015.05.031
                 Eiofabrication of Fell Lncorporated Vcaffolds, Tissue Eng-  44.  Perez  RA,  Kim  M,  Kim  TH,  et  al.  2013,  Utilizing
                 ineering Part C: Methods, vol.17(2): 229–237.     core–shell  fibrous  collagen-alginate  hydrogel  cell  deli-
                 https://doi.org/10.1089/ten.tec.2010.0195         very  system  for bone   tissue  engineering,  Tissue  Eng-
              34.  Koo Y, Kim G, 2016, New strategy for enhancing in situ   ineering Part A, vol.20(1±2): 103±114.
                 cell  viability  of  cell  printing  process  via  piezoelectric   https://doi.org/10.1089/ten.tea.2013.0198
                 transducer-assisted  three-dimensional  printing,  Biofabri-  45.  Faulkner-Jones  A,  Fyfe  C,  Cornelissen  DJ,  et  al.  2015,
                 cation, vol.8(2): 025010.                         Bioprinting of human pluripotent stem cells and their di-
                 https://doi.org/10.1088/1758-5090/8/2/025010      rected  differentiation  into  hepatocyte-like  cells  for  the
              35.  Chang  CC,  Boland  ED,  Williams  SK,  et  al.  2011,  Di-  generation of mini-livers in 3D, Biofabrication, vol.7(4):
                 rect‐write  bioprinting  three‐dimensional  biohybrid  sys-  044102.
                 tems  for fu ture  regenerative  therapies,  Journal  of  Bio-  https://doi.org/10.1088/1758-5090/7/4/044102
                 medical Materials Research Part B: Applied Biomaterials,   46.  Ahn SH, Lee HJ, Lee JS, et al. 2015, A novel cell print-

                                        International Journal of Bioprinting (2017)–Volume 3, Issue 1      39
   38   39   40   41   42   43   44   45   46   47   48