Page 45 - IJB-3-1
P. 45
Hyeong-jin Lee, Young Won Koo, Miji Yeo, et al.
https://doi.org/10.3390/microarrays4020133 75. Gaetani R, Doevendans PA, Metz CH, et al. 2012, Car-
68. Gaebel R, Ma N, Liu J, et al. 2011, Patterning human diac tissue engineering using tissue printing technology
stem cells and endothelial cells with laser printing for and human cardiac progenitor cells, Biomaterials,
cardiac regeneration, Biomaterials, vol.32(35): 9218± vol.33(6): 1782±1790.
9230. https://doi.org/10.1016/j.biomaterials.2011.11.003
https://doi.org/10.1016/j.biomaterials.2011.08.071 76. Lee H, Kim G, 2014, Enhanced cellular activities of po-
69. Wu P, Ringeisen B, 2010, Development of human umbil- lycaprolactone/alginate-based cell-laden hierarchical sca-
ical vein endothelial cell (HUVEC) and human umbilical ffolds for hard tissue engineering applications, Journal of
vein smooth muscle cell (HUVSMC) branch/stem struc- Colloid and Interface Science, vol.430: 315±325.
tures on hydrogel layers via biological laser printing https://doi.org/10.1016/j.jcis.2014.05.065
(BioLP), Biofabrication, vol.2(1): 014111. 77. Fedorovich NE, De Wijn JR, Verbout AJ, et al. 2008,
https://doi.org/10.1088/1758-5082/2/1/014111 Three-dimensional fiber deposition of cell-laden, viable,
70. Ker ED, Nain AS, Weiss LE, et al. 2011, Bioprinting of patterned constructs for bone tissue printing, Tissue En-
growth factors onto aligned sub-micron fibrous scaffolds gineering Part A, vol.14(1): 127±133.
for simultaneous control of cell differentiation and https://doi.org/10.1089/ten.a.2007.0158
alignment, Biomaterials, vol.32(32): 8097±8107. 78. Cui X, Boland T, 2009, Human microvasculature fabrica-
https://doi.org/10.1016/j.biomaterials.2011.07.025 tion using thermal inkjet printing technology, Biomate-
71. Ilkhanizadeh S, Teixeira AI, Hermanson O, 2007, Inkjet rials, vol.30(31): 6221±6227.
printing of macromolecules on hydrogels to steer neural https://doi.org/10.1016/j.biomaterials.2009.07.056
stem cell differentiation, Biomaterials, vol.28(27): 3936± 79. Norotte C, Marga FS, Niklason LE, et al. 2009, Scaf-
3943. fold-free vascular tissue engineering using bioprinting,
https://doi.org/10.1016/j.biomaterials.2007.05.018 Biomaterials, vol.30(30): 5910±5917.
72. Lee W, Debasitis JC, Lee VK, et al. 2009, Multi-layered https://doi.org/10.1016/j.biomaterials.2009.06.034
culture of hum an skin fibroblasts and keratinocytes 80. Marga F, Jakab K, Khatiwala C, et al. 2012, Toward en-
through three-dimensional freeform fabrication, Biomate- gineering functional organ modules by additive manu-
rials, vol.30(8): 1587±1595. facturing, Biofabrication, vol.4(2): 022001.
https://doi.org/10.1016/j.biomaterials.2008.12.009 https://doi.org/10.1088/1758-5082/4/2/022001
73. Duan B, Kapetanovic E, Hockaday LA, et al. 2014, 81. Jakab K, Norotte C, Damon B, et al. 2008, Tissue engi-
Three-dimensional printed trileaflet valve conduits us- neering by self-assembly of cells printed into topologi-
ing biological hydrogels and human valve interstitial cells, cally defined structures, Tissue Engineering Part A,
Acta Biomaterialia, vol.10(5): 1836±1846. vol.14(3): 413±421.
https://doi.org/10.1016/j.actbio.2013.12.005 https://doi.org/10.1089/tea.2007.0173
74. Duan B, Hockaday LA, Kang KH, et al. 2013, 3D bioprint- 82. Lee HJ, Kim YB, Ahn SH, et al. 2015, A New Approach
ing of heterogeneous aortic valve conduits with alginate/ for Fabricating Collagen/ECM‐Based Bioinks Using
gelatin hydrogels, Journal of Biomedical Materials Re- Preosteoblasts and Human Adipose Stem Cells, Advanced
search Part A, vol.101(5): 1255±1264. Healthcare Materials, vol.4(9): 1359±1368.
https://doi.org/10.1002/jbm.a.34420 https://doi.org/10.1002/adhm.201500193
International Journal of Bioprinting (2017)–Volume 3, Issue 1 41

