Page 267 - IJB-10-3
P. 267

International Journal of Bioprinting                                 Bioprinting organoids for toxicity testing




            11.  Xu S, Wu C, Guo WB, et al. Polystyrene nanoplastics   Scalable Stem Cell Culture. ACS Biomater Sci Eng. 2020;6:
               inhibit the transformation of Tetrabromobisphenol A by   2995-3004.
               the bacterium Rhodococcus jostii.  Acs Nano. 2022;16:      doi: 10.1021/acsbiomaterials.9b01825
               405-414.
               doi: 10.1021/acsnano.1c07133                    23.  Suntornnond R, Ng WL, Huang X, et al. Improving
                                                                  printability of hydrogel-based bio-inks for thermal inkjet
            12.  Yu Y, Ma R, Qu H, et al. Enhanced adsorption of   bioprinting applications via saponification and heat
               tetrabromobisphenol a (TBBPA) on cosmetic-derived   treatment processes. J Mater Chem B. 2022;10:5989-6000.
               plastic microbeads and combined effects on zebrafish.      doi: 10.1039/d2tb00442a
               Chemosphere. 2020;248:126067.
               doi: 10.1016/j.chemosphere.2020.126067          24.  Below CR, Kelly J, Brown A, et al. A microenvironment-
                                                                  inspired synthetic three-dimensional model for pancreatic
            13.  Lua  I,  Li  Y,  Zagory  JA,  et  al.  Characterization  of  hepatic   ductal adenocarcinoma organoids.  Nat Mater. 2022;21:
               stellate cells, portal fibroblasts, and mesothelial cells in   110-119.
               normal and fibrotic livers. J Hepatol. 2016;64:1137-1146.     doi: 10.1038/s41563-021-01085-1
               doi: 10.1016/j.jhep.2016.01.010
                                                               25.  Kanninen LK, Harjumaki R, Peltoniemi P, et al. Laminin-511
            14.  Cuvellier M, Ezan F, Oliveira H, et al. 3D culture of HepaRG   and laminin-521-based matrices for efficient hepatic
               cells in GelMa and its application to bioprinting of a   specification of human pluripotent stem cells. Biomaterials.
               multicellular hepatic model. Biomaterials, 2021;269:120611.  2016;103:86-100.
               doi: 10.1016/j.biomaterials.2020.120611            doi: 10.1016/j.biomaterials.2016.06.054
            15.  Rowe RG, Daley GQ. Induced pluripotent stem cells in   26.  Huo H, Liu F, Luo Y, et al. Triboelectric nanogenerators for
               disease  modelling and  drug  discovery.  Nat Rev Genet,    electro-assisted cell printing. Nano Energy. 2020;67:104150.
               2019;20:377-388.                                   doi: 10.1016/j.nanoen.2019.104150
               doi: 10.1038/s41576-019-0100-z
                                                               27.  Horiguchi I, Torizal FG, Nagate H, et al. Protection of
            16.  Soman SS, Vijayavenkataraman S. Applications of 3D   human induced pluripotent stem cells against shear stress
               bioprinted-induced pluripotent stem cells in healthcare.   in suspension culture by Bingham plastic fluid. Biotechnol
               Int J Bioprint. 2020;6:280.                        Prog. 2021;37:e3100.
               doi: 10.18063/ijb.v6i4.280
                                                                  doi: 10.1002/btpr.3100
            17.  Palpant NJ, Pabon L, Friedman CE, et al. Generating high-
               purity cardiac and endothelial derivatives from patterned   28.  Xu L, Hui AY, Albanis E, et al. Human hepatic stellate cell
               mesoderm using human pluripotent stem cells. Nat Protoc.   lines, LX-1 and LX-2:New tools for analysis of hepatic
               2017;12:15-31.                                     fibrosis. Gut. 2005;54:142-151.
               doi: 10.1038/nprot.2016.153                        doi: 10.1136/gut.2004.042127
            18.  Yao R, Alkhawtani AYF, Chen R, Luan J, Xu M. Rapid and   29.  Caldwell J, Lehner R, Balog S, et al. Fluorescent plastic
               efficient in vivo angiogenesis directed by electro-assisted   nanoparticles to track their interaction and fate in physiological
               bioprinting of alginate/collagen microspheres with human   environments. Environ Sci Nano. 2021;8:502-513.
               umbilical vein endothelial cell coating layer. Int J Bioprint.      doi: 10.1039/D0EN00944J
               2019;5:194.                                     30.  Caldwell J, Taladriz-Blanco P, Lehner R, et al. The micro-,
               doi: 10.18063/ijb.v5i2.1.194                       submicron-, and nanoplastic hunt: A review of detection
            19.  Takebe T, Sekine K, Enomura M, et al. Vascularized and   methods for plastic particles. Chemosphere. 293:133514.
               functional human liver from an iPSC-derived organ bud      doi: 10.1016/j.chemosphere.2022.133514
               transplant. Nature. 2013;499:481-484.           31.  Zauner W, Farrow NA, Haines AMR. In vitro uptake of
               doi: 10.1038/nature12271                           polystyrene microspheres: effect of particle size, cell line and                                    AQ3
            20.  Li Y, Jiang X, Li L, et al. 3D printing human induced   cell density. J Control Release. 2001;71:39-51.
               pluripotent stem cells with novel hydroxypropyl chitin      doi: 10.1016/s0168-3659(00)00358-8
               bioink: scalable expansion and uniform aggregation.   32.  Lunov O, Syrovets T, Loos C, et al. Differential uptake
               Biofabrication. 2018;10:044101.                    of functionalized polystyrene nanoparticles by human
               doi: 10.1088/1758-5090/aacfc3                      macrophages and  a monocytic  cell line.  Acs  Nano.
            21.  Ouyang L, Yao R, Zhao Y, Sun W. Effect of bioink properties   2011;5:1657-1669.
               on printability and cell viability for 3D bioplotting of      doi: 10.1021/nn2000756
               embryonic stem cells. Biofabrication. 2016;8:035020.   33.  Shen R, Yang K, Cheng X, et al. Accumulation of polystyrene
               doi: 10.1088/1758-5090/8/3/035020
                                                                  microplastics induces liver fibrosis by activating cGAS/
            22.  Feng L, Liang S, Zhou Y, et al. Three-Dimensional Printing   STING pathway. Environ Pollut. 2022;300:118986.
               of Hydrogel Scaffolds with Hierarchical Structure for      doi: 10.1016/j.envpol.2022.118986



            Volume 10 Issue 3 (2024)                       259                                doi: 10.36922/ijb.1403
   262   263   264   265   266   267   268   269   270   271   272