Page 385 - IJB-10-3
P. 385

International Journal of Bioprinting                               Multi-physical field control inkjet bioprinting




            8.   Zhao L, Chang Yan K, Yao R, Lin F, Sun W. Alternating force      doi: 10.1021/acsami.0c16714
               based drop-on-demand microdroplet formation and three-  21.   Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A,
               dimensional deposition. J Manuf Sci Eng. 2015;137:031009.  Annabi N, Khademhosseini A. Synthesis, properties, and
               doi: 10.1115/1.4029803
                                                                  biomedical applications of gelatin methacryloyl (GelMA)
            9.   Takagi D, Lin W, Matsumoto T, et al. High-precision three-  hydrogels. Biomaterials. 2015;73:254-271.
               dimensional inkjet technology for live cell bioprinting. Int J      doi: 10.1016/j.biomaterials.2015.08.045
               Bioprint. 2019;5(2):208.                        22.   Zhang F, Zhang Z, Duan X, et al. Integrating zinc/silicon
               doi: 10.18063/ijb.v5i2.208.
                                                                  dual ions with 3D-printed GelMA hydrogel promotes in situ
            10.   Li EQ, Xu Q, Sun J, Fuh JYH, Wong YS, Thoroddsen ST. Design   hair follicle regeneration. Int J Bioprint. 2023;9(3):703.
               and fabrication of a PET/PTFE-based piezoelectric squeeze      doi: 10.18063/ijb.703
               mode drop-on-demand inkjet printhead with interchangeable   23.   Klotz BJ, Gawlitta D, Rosenberg AJWP, Malda J,
               nozzle. Sens Actuators Phys. 2010;163:315-322.     Melchels FPW. Gelatin-methacryloyl hydrogels: towards
               doi: 10.1016/j.sna.2010.07.014
                                                                  biofabrication-based tissue repair.  Trends Biotechnol.
            11.   Foresti D, Kroll KT, Amissah R, et al. Acoustophoretic   2016;34:394-407.
               printing. Sci Adv. 2018;4:eaat1659.                doi: 10.1016/j.tibtech.2016.01.002
               doi: 10.1126/sciadv.aat1659
                                                               24.   Sun M, You D, Zhan N, et al. 4D oriented dynamic scaffold
            12.   Li X, Liu B, Pei B, et al. Inkjet bioprinting of biomaterials.   for promoting peripheral nerve regeneration and functional
               Chem Rev. 2020;120:10793-10833.                    recovery. Adv Funct Mater. 2023;2305827.
               doi: 10.1021/acs.chemrev.0c00008                   doi: 10.1002/adfm.202305827
            13.   Ringeisen BR, Spargo BJ, Wu PK, eds.  Cell and Organ   25.   Zhang J, Chen Y, Huang Y, et al. A 3D‐printed self‐adhesive
               Printing. New York, NY: Springer; 2010.            bandage with drug release for peripheral nerve repair. Adv
               doi: 10.1007/978-90-481-9145-1                     Sci. 2020;7:2002601.
                                                                  doi: 10.1002/advs.202002601
            14.   Zimmermann R, Hentschel C, Schrön F, et al. High
               resolution  bioprinting of  multi-component  hydrogels.   26.   Liu W, Heinrich MA, Zhou Y, et al. Extrusion bioprinting
               Biofabrication. 2019;11:045008.                    of shear‐thinning gelatin methacryloyl bioinks. Adv Healthc
               doi: 10.1088/1758-5090/ab2aa1                      Mater. 2017;6:1601451.
                                                                  doi: 10.1002/adhm.201601451
            15.  Christensen K, Xu C, Chai W, Zhang Z, Fu J, Huang
               Y. Freeform inkjet printing of cellular structures with   27.   Ying G, Jiang N, Yu C, Zhang YS. Three-dimensional
               bifurcations. Biotechnol Bioeng. 2015;112:1047-1055.  bioprinting of gelatin methacryloyl (GelMA).  Bio-Des
               doi: 10.1002/bit.25501                             Manuf. 2018;1(4):215-224.
                                                                  doi: 10.1007/s42242-018-0028-8
            16.   Yoon S, Park JA, Lee H-R, Yoon WH, Hwang DS, Jung S.
               Inkjet-spray hybrid printing for 3D freeform fabrication   28.   Zhang L, Zhang H, Wang H, et al. Fabrication of multi-
               of multilayered hydrogel structures.  Adv Healthc Mater.   channel nerve guidance conduits containing schwann cells
               2018;7:1800050.                                    based on multi-material 3D bioprinting.  3D Print Addit
               doi: 10.1002/adhm.201800050                        Manuf. 2022;10(5):1046-1054.
                                                                  doi: 10.1089/3dp.2021.0203
            17.   Cheng C, Moon YJ, Kim SH, et al. Water-matrix interaction
               at the drop-drop interface during drop-on-demand printing   29.   Suntornnond R, Ng WL, Huang X, Yeowa CHE, Yeong WY.
               of hydrogels. Int J Heat Mass Transf. 2020;150:119327.  Improving printability of hydrogel-based bio-inks for thermal
               doi: 10.1016/j.ijheatmasstransfer.2020.119327      inkjet bioprinting applications  via saponification and heat
                                                                  treatment processes. J Mater Chem B. 2022;10:5989-6000.
            18.   Sakurada S, Sole-Gras M, Christensen K, Wallace DB,
               Huang Y. Liquid-absorbing system-assisted intersecting jets      doi: 10.1039/D2TB00442A
               printing of soft structures from reactive biomaterials. Addit   30.   Liu X, Wang X, Zhang L, et al. 3D liver tissue model with
               Manuf. 2020;31:100934.                             branched vascular networks by multimaterial bioprinting.
               doi: 10.1016/j.addma.2019.100934                   Adv Healthc Mater. 2021;10:2101405.
                                                                  doi: 10.1002/adhm.202101405
            19.   Teo MY, Kee S, RaviChandran N, Stuart L, Aw KC, Stringer
               J. Enabling free-standing 3D hydrogel microstructures with   31.   Shao L, Gao Q, Xie C, et al. Sacrificial microgel-laden
               microreactive inkjet printing.  ACS  Appl  Mater  Interfaces.   bioink-enabled 3D bioprinting of mesoscale pore networks.
               2020;12:1832-1839.                                 Bio-Des Manuf. 2020;3:30-39.
               doi: 10.1021/acsami.9b17192                        doi: 10.1007/s42242-020-00062-y
            20.   Guo K, Wang H, Li S, et al. Collagen-based thiol–norbornene   32.   Mazur P. Freezing of living cells: mechanisms and
               photoclick bio-ink with excellent bioactivity and printability.   implications. Am J Physiol. 1984;247:C125-C142.
               ACS Appl Mater Interfaces. 2021;13:7037-7050.      doi: 10.1152/ajpcell.1984.247.3.C125


            Volume 10 Issue 3 (2024)                       377                                doi: 10.36922/ijb.2120
   380   381   382   383   384   385   386   387   388   389   390