Page 385 - IJB-10-3
P. 385
International Journal of Bioprinting Multi-physical field control inkjet bioprinting
8. Zhao L, Chang Yan K, Yao R, Lin F, Sun W. Alternating force doi: 10.1021/acsami.0c16714
based drop-on-demand microdroplet formation and three- 21. Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A,
dimensional deposition. J Manuf Sci Eng. 2015;137:031009. Annabi N, Khademhosseini A. Synthesis, properties, and
doi: 10.1115/1.4029803
biomedical applications of gelatin methacryloyl (GelMA)
9. Takagi D, Lin W, Matsumoto T, et al. High-precision three- hydrogels. Biomaterials. 2015;73:254-271.
dimensional inkjet technology for live cell bioprinting. Int J doi: 10.1016/j.biomaterials.2015.08.045
Bioprint. 2019;5(2):208. 22. Zhang F, Zhang Z, Duan X, et al. Integrating zinc/silicon
doi: 10.18063/ijb.v5i2.208.
dual ions with 3D-printed GelMA hydrogel promotes in situ
10. Li EQ, Xu Q, Sun J, Fuh JYH, Wong YS, Thoroddsen ST. Design hair follicle regeneration. Int J Bioprint. 2023;9(3):703.
and fabrication of a PET/PTFE-based piezoelectric squeeze doi: 10.18063/ijb.703
mode drop-on-demand inkjet printhead with interchangeable 23. Klotz BJ, Gawlitta D, Rosenberg AJWP, Malda J,
nozzle. Sens Actuators Phys. 2010;163:315-322. Melchels FPW. Gelatin-methacryloyl hydrogels: towards
doi: 10.1016/j.sna.2010.07.014
biofabrication-based tissue repair. Trends Biotechnol.
11. Foresti D, Kroll KT, Amissah R, et al. Acoustophoretic 2016;34:394-407.
printing. Sci Adv. 2018;4:eaat1659. doi: 10.1016/j.tibtech.2016.01.002
doi: 10.1126/sciadv.aat1659
24. Sun M, You D, Zhan N, et al. 4D oriented dynamic scaffold
12. Li X, Liu B, Pei B, et al. Inkjet bioprinting of biomaterials. for promoting peripheral nerve regeneration and functional
Chem Rev. 2020;120:10793-10833. recovery. Adv Funct Mater. 2023;2305827.
doi: 10.1021/acs.chemrev.0c00008 doi: 10.1002/adfm.202305827
13. Ringeisen BR, Spargo BJ, Wu PK, eds. Cell and Organ 25. Zhang J, Chen Y, Huang Y, et al. A 3D‐printed self‐adhesive
Printing. New York, NY: Springer; 2010. bandage with drug release for peripheral nerve repair. Adv
doi: 10.1007/978-90-481-9145-1 Sci. 2020;7:2002601.
doi: 10.1002/advs.202002601
14. Zimmermann R, Hentschel C, Schrön F, et al. High
resolution bioprinting of multi-component hydrogels. 26. Liu W, Heinrich MA, Zhou Y, et al. Extrusion bioprinting
Biofabrication. 2019;11:045008. of shear‐thinning gelatin methacryloyl bioinks. Adv Healthc
doi: 10.1088/1758-5090/ab2aa1 Mater. 2017;6:1601451.
doi: 10.1002/adhm.201601451
15. Christensen K, Xu C, Chai W, Zhang Z, Fu J, Huang
Y. Freeform inkjet printing of cellular structures with 27. Ying G, Jiang N, Yu C, Zhang YS. Three-dimensional
bifurcations. Biotechnol Bioeng. 2015;112:1047-1055. bioprinting of gelatin methacryloyl (GelMA). Bio-Des
doi: 10.1002/bit.25501 Manuf. 2018;1(4):215-224.
doi: 10.1007/s42242-018-0028-8
16. Yoon S, Park JA, Lee H-R, Yoon WH, Hwang DS, Jung S.
Inkjet-spray hybrid printing for 3D freeform fabrication 28. Zhang L, Zhang H, Wang H, et al. Fabrication of multi-
of multilayered hydrogel structures. Adv Healthc Mater. channel nerve guidance conduits containing schwann cells
2018;7:1800050. based on multi-material 3D bioprinting. 3D Print Addit
doi: 10.1002/adhm.201800050 Manuf. 2022;10(5):1046-1054.
doi: 10.1089/3dp.2021.0203
17. Cheng C, Moon YJ, Kim SH, et al. Water-matrix interaction
at the drop-drop interface during drop-on-demand printing 29. Suntornnond R, Ng WL, Huang X, Yeowa CHE, Yeong WY.
of hydrogels. Int J Heat Mass Transf. 2020;150:119327. Improving printability of hydrogel-based bio-inks for thermal
doi: 10.1016/j.ijheatmasstransfer.2020.119327 inkjet bioprinting applications via saponification and heat
treatment processes. J Mater Chem B. 2022;10:5989-6000.
18. Sakurada S, Sole-Gras M, Christensen K, Wallace DB,
Huang Y. Liquid-absorbing system-assisted intersecting jets doi: 10.1039/D2TB00442A
printing of soft structures from reactive biomaterials. Addit 30. Liu X, Wang X, Zhang L, et al. 3D liver tissue model with
Manuf. 2020;31:100934. branched vascular networks by multimaterial bioprinting.
doi: 10.1016/j.addma.2019.100934 Adv Healthc Mater. 2021;10:2101405.
doi: 10.1002/adhm.202101405
19. Teo MY, Kee S, RaviChandran N, Stuart L, Aw KC, Stringer
J. Enabling free-standing 3D hydrogel microstructures with 31. Shao L, Gao Q, Xie C, et al. Sacrificial microgel-laden
microreactive inkjet printing. ACS Appl Mater Interfaces. bioink-enabled 3D bioprinting of mesoscale pore networks.
2020;12:1832-1839. Bio-Des Manuf. 2020;3:30-39.
doi: 10.1021/acsami.9b17192 doi: 10.1007/s42242-020-00062-y
20. Guo K, Wang H, Li S, et al. Collagen-based thiol–norbornene 32. Mazur P. Freezing of living cells: mechanisms and
photoclick bio-ink with excellent bioactivity and printability. implications. Am J Physiol. 1984;247:C125-C142.
ACS Appl Mater Interfaces. 2021;13:7037-7050. doi: 10.1152/ajpcell.1984.247.3.C125
Volume 10 Issue 3 (2024) 377 doi: 10.36922/ijb.2120

