Page 386 - IJB-10-3
P. 386

International Journal of Bioprinting                               Multi-physical field control inkjet bioprinting




            33.   Zhou J, Pei Z. Experimental study of the piezoelectric drop-  40.   Shah MA, Lee D-G, Lee BY, Kim NW, An H, Hur S.
               on-demand drop formation in a coaxial airflow. Chem Eng   Actuating voltage waveform optimization of piezoelectric
               Process. 2020;147:107778.                          inkjet printhead for suppression of residual vibrations.
               doi: 10.1016/j.cep.2019.107778                     Micromachines. 2020;11:900.
                                                                  doi: 2072-666X/11/10/900
            34.   Binder KW, Allen AJ, Yoo JJ, Atala A. Drop-on-demand
               inkjet bioprinting: a primer.  Gene Ther Regul. 2011;06:   41.   Liu  H,  Liu  J,  Qi  C,  et  al.  Thermosensitive  injectable
               33-49.                                             in-situ forming carboxymethyl chitin hydrogel for
               doi: 10.1142/S1568558611000258                     three-dimensional cell culture.  Acta  Biomater. 2016;
                                                                  35:228-237.
            35.   Jaffe H, Berlincourt DA. Piezoelectric transducer materials.      doi: 10.1016/j.actbio.2016.02.028
               Proc IEEE. 1965;53:1372-1386.
               doi: 10.1109/PROC.1965.4253                     42.   Shih H, Lin C-C. Visible-light-mediated thiol-ene
                                                                  hydrogelation using  eosin-Y  as  the  only  photoinitiator.
            36.   McLean D. Understanding Aerodynamics: Arguing from the   Macromol Rapid Commun. 2013;34:269-273.
               Real Physics. Chichester, West Sussex: McLean John Wiley      doi: 10.1002/marc.201200605
               and Sons 2012.
               doi: 10.1002/9781118454190                      43.   Guvendiren M, Burdick JA. Stiffening hydrogels to probe
                                                                  short- and long-term cellular responses to dynamic
            37.   Chang H-J, Tsai MH, Hwang W-S. The simulation of micro   mechanics. Nat Commun. 2012;3:792.
               droplet behavior of molten lead-free solder in inkjet printing      doi: 10.1038/ncomms1792
               process and its experimental validation. Appl Math Model.   44.   Csemány D. Thermal analysis of suspended single droplet
               2012;36:3067–-3079.                                evaporation measurements with a coupled lumped
               doi: 10.1016/j.apm.2011.09.094                     parameter model. Heat Mass Transf. 2023;59:2181-2195.
            38.   He M, Sun L, Hu K, Zhu Y, Ma L, Chen H. Drop-on-     doi: 10.1007/s00231-023-03403-6
               demand inkjet printhead performance enhancement by   45.   Sazhin SS,  Gol’dshtein  VA, Heikal MR.  A transient
               dynamic lumped element modeling for printable electronics   formulation of newton’s cooling law for spherical bodies. J
               fabrication. Math Probl Eng. 2014;2014:1-16.       Heat Transf. 2001;123:63-64.
               doi: 10.1155/2014/270679                           doi: 10.1115/1.1337650
            39.   Gallas  Q, Sheplak  M, Kaysap  A, et al. Lumped element   46.   Gong Y, Bi Z, Bian X, et al. Study on linear bio-structure print
               modeling of piezoelectric-driven synthetic jet actuators.   process based on alginate bio-ink in 3D bio-fabrication. Bio-
               40th AIAA Aerospace Sciences Meeting & Exhibit. 2002.  Des Manuf. 2020;3:109-121.
               doi: 10.2514/6.2002-125                            doi: 10.1007/s42242-020-00065-9




































            Volume 10 Issue 3 (2024)                       378                                doi: 10.36922/ijb.2120
   381   382   383   384   385   386   387   388   389   390   391