Page 60 - IJB-10-3
P. 60

International Journal of Bioprinting                      3D-printed biodegradable metals for bone regeneration




               regeneration in  implant dentistry.  Mater Sci Eng C Mater   22.  Jing Z, Zhang T, Xiu P, et al. Functionalization of 3D-printed
               Biol Appl. 2021;124:112055.                        titanium  alloy orthopedic  implants:  a  literature review.
               doi: 10.1016/j.msec.2021.112055                    Biomed Mater. 2020;15(5):052003.
                                                                  doi: 10.1088/1748-605X/ab9078
            10.  Funda G, Taschieri S, Bruno GA,  et al. Nanotechnology
               scaffolds for alveolar bone regeneration. Materials (Basel).   23.  Zhang Y, Xu J, Ruan YC, et al. Implant-derived magnesium
               2020;13(1).                                        induces local neuronal production of CGRP to improve bone-
               doi: 10.3390/ma13010201                            fracture healing in rats. Nat Med. 2016;22(10):1160-1169.
            11.  Murphy SV, Atala A. 3D bioprinting of tissues and organs.      doi: 10.1038/nm.4162
               Nat Biotechnol. 2014;32(8):773-785.             24.  Qin Y, Wen P, Guo H,  et al. Additive manufacturing of
               doi: 10.1038/nbt.2958                              biodegradable metals: current research status and future
            12.  Wang S, Zhao S, Yu J, Gu Z, Zhang Y. Advances in translational   perspectives. Acta Biomater. 2019;98:3-22.
               3D printing for cartilage, bone, and osteochondral tissue      doi: 10.1016/j.actbio.2019.04.046
               engineering. Small. 2022;18(36):e2201869.       25.  Xia D, Yang F, Zheng Y, Liu Y, Zhou Y. Research status of
               doi: 10.1002/smll.202201869                        biodegradable metals designed for oral and maxillofacial
            13.  Qu M, Wang C, Zhou X,  et al. Multi-dimensional   applications: a review. Bioact Mater. 2021;6(11):4186-4208.
               printing for bone tissue engineering.  Adv Healthc Mater.      doi: 10.1016/j.bioactmat.2021.01.011
               2021;10(11):e2001986.                           26.  Feng Y, Zhu S, Mei D,  et al. Application of 3D printing
               doi: 10.1002/adhm.202001986                        technology in bone tissue engineering: a review. Curr Drug
            14.  Ashammakhi N, Hasan A, Kaarela O,  et al. Advancing   Deliv. 2021;18(7):847-861.
               frontiers in bone bioprinting.  Adv  Healthc  Mater.      doi: 10.2174/1567201817999201113100322
               2019;8(7):e1801048.                             27.  Putra NE, Leeflang MA, Taheri P,  et al. Extrusion-based
               doi: 10.1002/adhm.201801048                        3D printing of ex situ-alloyed highly biodegradable MRI-
            15.  Thrivikraman G, Athirasala A, Twohig C, Boda SK,   friendly porous iron-manganese scaffolds.  Acta Biomater.
               Bertassoni LE. Biomaterials for craniofacial bone   2021;134:774-790.
               regeneration. Dent Clin North Am. 2017;61(4):835-856.     doi: 10.1016/j.actbio.2021.07.042
               doi: 10.1016/j.cden.2017.06.003                 28.  Belluci MM, de Molon RS, Rossa Jr C,  et al. Severe
            16.  Liu Y, Zheng Y, Chen XH,  et al. Fundamental theory of   magnesium deficiency compromises systemic bone mineral
               biodegradable metals—definition, criteria, and design. Adv   density and aggravates inflammatory bone resorption.  J
               Funct Mater. 2019;29(18).                          Nutr Biochem. 2020;77:108301.
               doi: 10.1002/adfm.201805402                        doi: 10.1016/j.jnutbio.2019.108301
            17.  Bose S, Koski C, Vu AA. Additive manufacturing of natural   29.  Erem S, Atfi A, Razzaque MS. Anabolic effects of vitamin D
               biopolymers and composites for bone tissue engineering.   and magnesium in aging bone. J Steroid Biochem Mol Biol.
               Mater Horizons. 2020;7(8):2011-2027.               2019;193:105400.
               doi: 10.1039/d0mh00277a                            doi: 10.1016/j.jsbmb.2019.105400
            18.  Panayotov IV,  Orti V, Cuisinier  F, Yachouh J.   30.  Ye L, Xu J, Mi J, et al. Biodegradable magnesium combined
               Polyetheretherketone (PEEK) for medical applications.    with distraction osteogenesis synergistically stimulates bone
               J Mater Sci Mater Med. 2016;27(7):118.             tissue regeneration via CGRP-FAK-VEGF signaling axis.
               doi: 10.1007/s10856-016-5731-4                     Biomaterials. 2021;275:120984.
                                                                  doi: 10.1016/j.biomaterials.2021.120984
            19.  Siddiqui N, Asawa S, Birru B, Baadhe R, Rao S. PCL-
               based composite scaffold matrices for tissue engineering   31.  Liu W, Guo S, Tang Z,  et al. Magnesium promotes bone
               applications. Mol Biotechnol. 2018;60(7):506-532.  formation and angiogenesis by enhancing MC3T3-E1
               doi: 10.1007/s12033-018-0084-5                     secretion of PDGF-BB.  Biochem Biophys Res Commun.
                                                                  2020;528(4):664-670.
            20.  Pina S, Rebelo R, Correlo VM, Oliveira JM, Reis RL.
               Bioceramics for osteochondral tissue engineering and      doi: 10.1016/j.bbrc.2020.05.113
               regeneration. Adv Exp Med Biol. 2018;1058:53-75.  32.  Gillman CE, Jayasuriya AC. FDA-approved bone grafts and
               doi: 10.1007/978-3-319-76711-6_3                   bone graft substitute devices in bone regeneration. Mater Sci
                                                                  Eng C Mater Biol Appl. 2021;130:112466.
            21.  Rahmanian R, Moghaddam NS, Haberland C, Dean D, Miller
               M, Elahinia M. Load bearing and stiffness tailored NiTi      doi: 10.1016/j.msec.2021.112466
               implants  produced  by  additive  manufacturing: a  simulation   33.  Lin S, Yin S, Shi J, et al. Orchestration of energy metabolism
               study.  In: Proceedings of the SPIE 9058, Behavior and Mechanics   and osteogenesis by Mg(2+) facilitates low-dose BMP-2-
               of Multifunctional Materials and Composites 2014; 2014: 905814.   driven regeneration. Bioact Mater. 2022;18:116-127.
               doi: 10.1117/12.2048948                            doi: 10.1016/j.bioactmat.2022.03.024


            Volume 10 Issue 3 (2024)                        52                                doi: 10.36922/ijb.2460
   55   56   57   58   59   60   61   62   63   64   65