Page 64 - IJB-10-3
P. 64
International Journal of Bioprinting 3D-printed biodegradable metals for bone regeneration
printed strontium-substituted magnesium phosphate 115. Hollister SJ. Porous scaffold design for tissue engineering.
scaffolds. Acta Biomater. 2016;31:401-411. Nat Mater. 2005;4(7):518-524.
doi: 10.1016/j.actbio.2015.11.050 doi: 10.1038/nmat1421
104. Meininger S, Moseke C, Spatz K, et al. Effect of strontium 116. Agarwal S, Curtin J, Duffy B, Jaiswal S. Biodegradable
substitution on the material properties and osteogenic magnesium alloys for orthopaedic applications: a review
potential of 3D powder printed magnesium phosphate on corrosion, biocompatibility and surface modifications.
scaffolds. Mater Sci Eng C Mater Biol Appl. 2019;98: Mater Sci Eng C. 2016;68:948-963.
1145-1158. doi: 10.1016/j.msec.2016.06.020
doi: 10.1016/j.msec.2019.01.053 117. Martinez Sanchez AH, Luthringer BJ, Feyerabend F,
105. Verlee B, Dormal T, Lecomte-Beckers J. Density and porosity Willumeit R. Mg and Mg alloys: how comparable are in
control of sintered 316L stainless steel parts produced by vitro and in vivo corrosion rates? A review. Acta Biomater.
additive manufacturing. Powder Metall. 2013;55(4):260-267. 2015;13:16-31.
doi: 10.1179/0032589912z.00000000082 doi: 10.1016/j.actbio.2014.11.048
106. Dutta S, Roy M. Recent developments in engineered 118. Xu L, Zhang E, Yin D, Zeng S, Yang K. In vitro corrosion
magnesium scaffolds for bone tissue engineering. ACS behaviour of Mg alloys in a phosphate buffered solution
Biomater Sci Eng. 2023;9(6):3010-3031. for bone implant application. J Mater Sci Mater Med.
doi: 10.1021/acsbiomaterials.2c01510 2008;19(3):1017-1025.
doi: 10.1007/s10856-007-3219-y
107. Hériveaux Y, Le Cann S, Fraulob M, et al. Mechanical
micromodeling of stress-shielding at the bone-implant 119. Ansari MAA, Golebiowska AA, Dash M, et al. Engineering
interphase under shear loading. Med Biol Eng Comput. biomaterials to 3D-print scaffolds for bone regeneration:
2022;60(11):3281-3293. practical and theoretical consideration. Biomater Sci.
doi: 10.1007/s11517-022-02657-2 2022;10(11):2789-2816.
doi: 10.1039/d2bm00035k
108. Raffa ML, Nguyen VH, Hernigou P, Flouzat-Lachaniette
CH, Haiat G. Stress shielding at the bone-implant interface: 120. Yang Y, Guo X, He C, Gao C, Shuai C. Regulating degradation
Influence of surface roughness and of the bone-implant behavior by incorporating mesoporous silica for Mg bone
implants. ACS Biomater Sci Eng. 2018;4(3):1046-1054.
contact ratio. J Orthop Res. 2021;39(6):1174-1183. doi: 10.1021/acsbiomaterials.8b00020
doi: 10.1002/jor.24840
121. Sarian MN, Iqbal N, Sotoudehbagha P, et al. Potential
109. Xue J, Singh S, Zhou Y, et al. A biodegradable 3D woven bioactive coating system for high-performance absorbable
magnesium-based scaffold for orthopedic implants. magnesium bone implants. Bioact Mater. 2022;12:42-63.
Biofabrication. 2022;14(3). doi: 10.1016/j.bioactmat.2021.10.034
doi: 10.1088/1758-5090/ac73b8
122. Hanzi AC, Gunde P, Schinhammer M, Uggowitzer PJ. On
110. Persson M, Lehenkari PP, Berglin L, et al. Osteogenic the biodegradation performance of an Mg-Y-RE alloy with
differentiation of human mesenchymal stem cells in a 3D various surface conditions in simulated body fluid. Acta
woven scaffold. Sci Rep. 2018;8(1):10457. Biomater. 2009;5(1):162-171.
doi: 10.1038/s41598-018-28699-x doi: 10.1016/j.actbio.2008.07.034
111. Karunakaran R, Ortgies S, Tamayol A, Bobaru F, Sealy MP. 123. Bîrcă AC, Neacşu IA, Vasile OR, et al. Mg-Zn alloys,
Additive manufacturing of magnesium alloys. Bioact Mater. most suitable for biomedical applications. Rom J Morphol
2020;5(1):44-54. Embryol. 2018;59(1):49-54.
doi: 10.1016/j.bioactmat.2019.12.004
124. Han P, Cheng P, Zhang S, et al. In vitro and in vivo studies on
112. Lavery NP, Cherry J, Mehmood S, et al. Effects of hot isostatic the degradation of high-purity Mg (99.99wt.%) screw with
pressing on the elastic modulus and tensile properties of femoral intracondylar fractured rabbit model. Biomaterials.
316L parts made by powder bed laser fusion. Mater Sci Eng 2015;64:57-69.
A. 2017;693:186-213. doi: 10.1016/j.biomaterials.2015.06.031
doi: 10.1016/j.msea.2017.03.100
125. Cheng MQ, Wahafu T, Jiang GF, et al. A novel open-porous
113. de Baaij JH, Hoenderop JG, Bindels RJ. Magnesium in magnesium scaffold with controllable microstructures and
man: implications for health and disease. Physiol Rev. properties for bone regeneration. Sci Rep. 2016;6:24134.
2015;95(1):1-46. doi: 10.1038/srep24134
doi: 10.1152/physrev.00012.2014
126. Seyedraoufi ZS, Mirdamadi S. Synthesis, microstructure and
114. Langer R, Vacanti JP. Tissue engineering. Science. mechanical properties of porous Mg--Zn scaffolds. J Mech
1993;260(5110):920-926. Behav Biomed Mater. 2013;21:1-8.
doi: 10.1126/science.8493529 doi: 10.1016/j.jmbbm.2013.01.023
Volume 10 Issue 3 (2024) 56 doi: 10.36922/ijb.2460

