Page 64 - IJB-10-3
P. 64

International Journal of Bioprinting                      3D-printed biodegradable metals for bone regeneration




               printed strontium-substituted magnesium phosphate   115. Hollister SJ. Porous scaffold design for tissue engineering.
               scaffolds. Acta Biomater. 2016;31:401-411.         Nat Mater. 2005;4(7):518-524.
               doi: 10.1016/j.actbio.2015.11.050                  doi: 10.1038/nmat1421
            104.  Meininger S, Moseke C, Spatz K,  et al. Effect of strontium   116. Agarwal S, Curtin J, Duffy B, Jaiswal S. Biodegradable
               substitution on the material properties and osteogenic   magnesium alloys for orthopaedic applications: a review
               potential of 3D powder printed magnesium phosphate   on corrosion, biocompatibility and surface modifications.
               scaffolds.  Mater Sci Eng C Mater Biol Appl.  2019;98:   Mater Sci Eng C. 2016;68:948-963.
               1145-1158.                                         doi: 10.1016/j.msec.2016.06.020
               doi: 10.1016/j.msec.2019.01.053                 117. Martinez Sanchez AH, Luthringer BJ, Feyerabend F,
            105. Verlee B, Dormal T, Lecomte-Beckers J. Density and porosity   Willumeit R. Mg and Mg alloys: how comparable are in
               control of sintered 316L stainless steel parts produced by   vitro and in vivo corrosion rates? A review. Acta Biomater.
               additive manufacturing. Powder Metall. 2013;55(4):260-267.  2015;13:16-31.
               doi: 10.1179/0032589912z.00000000082               doi: 10.1016/j.actbio.2014.11.048
            106. Dutta S, Roy M. Recent developments in engineered   118. Xu L, Zhang E, Yin D, Zeng S, Yang K. In vitro corrosion
               magnesium scaffolds for bone tissue engineering.  ACS   behaviour of Mg alloys in a phosphate buffered solution
               Biomater Sci Eng. 2023;9(6):3010-3031.             for bone implant application.  J  Mater  Sci  Mater  Med.
               doi: 10.1021/acsbiomaterials.2c01510               2008;19(3):1017-1025.
                                                                  doi: 10.1007/s10856-007-3219-y
            107. Hériveaux Y, Le Cann S, Fraulob M,  et al. Mechanical
               micromodeling of stress-shielding at the bone-implant   119. Ansari MAA, Golebiowska AA, Dash M, et al. Engineering
               interphase  under shear loading.  Med Biol Eng Comput.   biomaterials to 3D-print scaffolds for bone regeneration:
               2022;60(11):3281-3293.                             practical and theoretical consideration.  Biomater Sci.
               doi: 10.1007/s11517-022-02657-2                    2022;10(11):2789-2816.
                                                                  doi: 10.1039/d2bm00035k
            108. Raffa ML, Nguyen VH, Hernigou P, Flouzat-Lachaniette
               CH, Haiat G. Stress shielding at the bone-implant interface:   120. Yang Y, Guo X, He C, Gao C, Shuai C. Regulating degradation
               Influence of surface roughness and of the bone-implant   behavior by incorporating mesoporous silica for Mg bone
                                                                  implants. ACS Biomater Sci Eng. 2018;4(3):1046-1054.
               contact ratio. J Orthop Res. 2021;39(6):1174-1183.     doi: 10.1021/acsbiomaterials.8b00020
               doi: 10.1002/jor.24840
                                                               121. Sarian MN, Iqbal N, Sotoudehbagha P,  et al. Potential
            109. Xue J, Singh S, Zhou Y, et al. A biodegradable 3D woven   bioactive coating system for high-performance absorbable
               magnesium-based scaffold for orthopedic implants.   magnesium bone implants. Bioact Mater. 2022;12:42-63.
               Biofabrication. 2022;14(3).                        doi: 10.1016/j.bioactmat.2021.10.034
               doi: 10.1088/1758-5090/ac73b8
                                                               122. Hanzi AC, Gunde P, Schinhammer M, Uggowitzer PJ. On
            110. Persson M, Lehenkari PP, Berglin L,  et al. Osteogenic   the biodegradation performance of an Mg-Y-RE alloy with
               differentiation of human mesenchymal stem cells in a 3D   various surface conditions in simulated body fluid.  Acta
               woven scaffold. Sci Rep. 2018;8(1):10457.          Biomater. 2009;5(1):162-171.
               doi: 10.1038/s41598-018-28699-x                    doi: 10.1016/j.actbio.2008.07.034
            111. Karunakaran R, Ortgies S, Tamayol A, Bobaru F, Sealy MP.   123. Bîrcă AC, Neacşu IA, Vasile OR,  et al. Mg-Zn alloys,
               Additive manufacturing of magnesium alloys. Bioact Mater.   most suitable for biomedical applications. Rom J Morphol
               2020;5(1):44-54.                                   Embryol. 2018;59(1):49-54.
               doi: 10.1016/j.bioactmat.2019.12.004
                                                               124. Han P, Cheng P, Zhang S, et al. In vitro and in vivo studies on
            112. Lavery NP, Cherry J, Mehmood S, et al. Effects of hot isostatic   the degradation of high-purity Mg (99.99wt.%) screw with
               pressing on the elastic modulus and tensile properties of   femoral intracondylar fractured rabbit model. Biomaterials.
               316L parts made by powder bed laser fusion. Mater Sci Eng   2015;64:57-69.
               A. 2017;693:186-213.                               doi: 10.1016/j.biomaterials.2015.06.031
               doi: 10.1016/j.msea.2017.03.100
                                                               125. Cheng MQ, Wahafu T, Jiang GF, et al. A novel open-porous
            113. de Baaij JH, Hoenderop JG, Bindels RJ. Magnesium in   magnesium scaffold with controllable microstructures and
               man:  implications  for  health  and  disease.  Physiol Rev.   properties for bone regeneration. Sci Rep. 2016;6:24134.
               2015;95(1):1-46.                                   doi: 10.1038/srep24134
               doi: 10.1152/physrev.00012.2014
                                                               126. Seyedraoufi ZS, Mirdamadi S. Synthesis, microstructure and
            114. Langer R, Vacanti JP. Tissue engineering.  Science.   mechanical properties of porous Mg--Zn scaffolds. J Mech
               1993;260(5110):920-926.                            Behav Biomed Mater. 2013;21:1-8.
               doi: 10.1126/science.8493529                       doi: 10.1016/j.jmbbm.2013.01.023



            Volume 10 Issue 3 (2024)                        56                                doi: 10.36922/ijb.2460
   59   60   61   62   63   64   65   66   67   68   69