Page 67 - IJB-10-3
P. 67
International Journal of Bioprinting 3D-printed biodegradable metals for bone regeneration
174. Guo Y, Zhao M-C, Xie B, et al. In vitro corrosion resistance 186. Wei X, Zhou W, Tang Z, et al. Magnesium surface-activated
and antibacterial performance of novel Fe–xCu biomedical 3D printed porous PEEK scaffolds for in vivo osseointegration
alloys prepared by selective laser melting. Adv Eng Mater. by promoting angiogenesis and osteogenesis. Bioact Mater.
2021;23(4). 2023;20:16-28.
doi: 10.1002/adem.202001000 doi: 10.1016/j.bioactmat.2022.05.011
175. Schinhammer M, Hänzi AC, Löffler JF, Uggowitzer PJ. 187. Liu X, Li X, Huo S, et al. Magnesium bioactive glass
Design strategy for biodegradable Fe-based alloys for hybrid functionalized polyetheretherketone with
medical applications. Acta Biomater. 2010;6(5):1705-1713. immunomodulatory function to guide cell fate and bone
doi: 10.1016/j.actbio.2009.07.039 regeneration. Colloids Surf B. 2023;230:113523.
doi: 10.1016/j.colsurfb.2023.113523
176. Mandal S, Kishore V, Bose M, Nandi SK, Roy M. In vitro and
in vivo degradability, biocompatibility and antimicrobial 188. Xu D, Xu Z, Cheng L, et al. Improvement of the mechanical
characteristics of Cu added iron-manganese alloy. J Mater properties and osteogenic activity of 3D-printed polylactic
Sci Technol. 2021;84:159-172. acid porous scaffolds by nano-hydroxyapatite and nano-
doi: 10.1016/j.jmst.2020.12.029 magnesium oxide. Heliyon. 2022;8(6):e09748.
doi: 10.1016/j.heliyon.2022.e09748
177. Huang T, Cheng J, Bian D, Zheng Y. Fe-Au and Fe-Ag
composites as candidates for biodegradable stent materials. 189. Lai Y, Li Y, Cao H, et al. Osteogenic magnesium incorporated
J Biomed Mater Res B Appl Biomater. 2016;104(2):225-240. into PLGA/TCP porous scaffold by 3D printing for repairing
doi: 10.1002/jbm.b.33389 challenging bone defect. Biomaterials. 2019;197:207-219.
doi: 10.1016/j.biomaterials.2019.01.013
178. Schinhammer M, Gerber I, Hänzi AC, Uggowitzer PJ. On
the cytocompatibility of biodegradable Fe-based alloys. 190. Eugen G, Claus M, Anna-Maria S, et al. Degradation of
Mater Sci Eng C Mater Biol Appl. 2013;33(2):782-789. 3D-printed magnesium phosphate ceramics in vitro and
doi: 10.1016/j.msec.2012.11.002 a prognosis on their bone regeneration potential. Bioact
Mater. 2023;19:376-391.
179. Kupková M, Kupka M, Morovská Turoňová A, Oriňaková R. doi: 10.1016/j.bioactmat.2022.04.015
Microstructural, mechanical and corrosion characteristics
of degradable PM biomaterials made from copper-coated 191. Wang D, Liu L, Deng G, et al. Recent progress on additive
iron powders. Materials. 2022;15(5). manufacturing of multi-material structures with laser
doi: 10.3390/ma15051913 powder bed fusion. Virtual Phys Prototyp. 2022;17(2):
329-365.
180. Scarcello E, Lison D. Are Fe-based stenting materials doi: 10.1080/17452759.2022.2028343
biocompatible? a critical review of in vitro and in vivo
studies. J Funct Biomater. 2019;11(1). 192. Huang S, Wang B, Zhang X, et al. High-purity weight-
doi: 10.3390/jfb11010002 bearing magnesium screw: translational application in the
healing of femoral neck fracture. Biomaterials. 2020;238:
181. Bondareva JV, Dubinin ON, Kuzminova YO, et al. 119829.
Biodegradable iron-silicone implants produced by additive doi: 10.1016/j.biomaterials.2020.119829
manufacturing. Biomed Mater. 2022;17(3).
doi: 10.1088/1748-605X/ac6124 193. Rossig C, Angrisani N, Helmecke P, et al. In vivo evaluation
of a magnesium-based degradable intramedullary nailing
182. Hong D, Chou DT, Velikokhatnyi OI, et al. Binder-jetting system in a sheep model. Acta Biomater. 2015;25:369-383.
3D printing and alloy development of new biodegradable doi: 10.1016/j.actbio.2015.07.025
Fe-Mn-Ca/Mg alloys. Acta Biomater. 2016;45:375-386.
doi: 10.1016/j.actbio.2016.08.032 194. Jahn K, Saito H, Taipaleenmaki H, et al. Intramedullary
Mg2Ag nails augment callus formation during fracture
183. Nie Y, Chen G, Peng H, et al. In vitro and 48 weeks in vivo healing in mice. Acta Biomater. 2016;36:350-360.
performances of 3D printed porous Fe-30Mn biodegradable doi: 10.1016/j.actbio.2016.03.041
scaffolds. Acta Biomater. 2021;121:724-740.
doi: 10.1016/j.actbio.2020.12.028 195. Ali W, Mehboob A, Han M-G, Chang S-H. Experimental
study on degradation of mechanical properties of
184. Shuai C, Zan J, Qi F, et al. nMgO-incorporated PLLA bone biodegradable magnesium alloy (AZ31) wires/poly(lactic
scaffolds: enhanced crystallinity and neutralized acidic acid) composite for bone fracture healing applications.
products. Mater Des. 2019;174. Compos Struct. 2019;210:914-921.
doi: 10.1016/j.matdes.2019.107801 doi: 10.1016/j.compstruct.2018.12.011
185. Anita Lett J, Sagadevan S, Léonard E, et al. Bone tissue 196. Ran Z, Wang Y, Li J, et al. 3D-printed biodegradable
engineering potentials of 3D printed magnesium- magnesium alloy scaffolds with zoledronic acid-loaded
hydroxyapatite in polylactic acid composite scaffolds. Artif ceramic composite coating promote osteoporotic bone
Organs. 2021;45(12):1501-1512. defect repair. Int J Bioprint. 2023;9(5):769.
doi: 10.1111/aor.14045 doi: 10.18063/ijb.769
Volume 10 Issue 3 (2024) 59 doi: 10.36922/ijb.2460

