Page 67 - IJB-10-3
P. 67

International Journal of Bioprinting                      3D-printed biodegradable metals for bone regeneration




            174. Guo Y, Zhao M-C, Xie B, et al. In vitro corrosion resistance   186. Wei X, Zhou W, Tang Z, et al. Magnesium surface-activated
               and antibacterial performance of novel Fe–xCu biomedical   3D printed porous PEEK scaffolds for in vivo osseointegration
               alloys prepared by selective laser melting. Adv Eng Mater.   by promoting angiogenesis and osteogenesis. Bioact Mater.
               2021;23(4).                                        2023;20:16-28.
               doi: 10.1002/adem.202001000                        doi: 10.1016/j.bioactmat.2022.05.011
            175. Schinhammer M, Hänzi AC, Löffler JF, Uggowitzer PJ.   187. Liu X, Li X, Huo S,  et al. Magnesium bioactive glass
               Design strategy for biodegradable Fe-based alloys for   hybrid  functionalized  polyetheretherketone  with
               medical applications. Acta Biomater. 2010;6(5):1705-1713.  immunomodulatory function to guide  cell fate and bone
               doi: 10.1016/j.actbio.2009.07.039                  regeneration. Colloids Surf B. 2023;230:113523.
                                                                  doi: 10.1016/j.colsurfb.2023.113523
            176. Mandal S, Kishore V, Bose M, Nandi SK, Roy M. In vitro and
               in vivo degradability, biocompatibility and antimicrobial   188. Xu D, Xu Z, Cheng L, et al. Improvement of the mechanical
               characteristics of Cu added iron-manganese alloy. J Mater   properties and osteogenic activity of 3D-printed polylactic
               Sci Technol. 2021;84:159-172.                      acid  porous  scaffolds  by  nano-hydroxyapatite  and  nano-
               doi: 10.1016/j.jmst.2020.12.029                    magnesium oxide. Heliyon. 2022;8(6):e09748.
                                                                  doi: 10.1016/j.heliyon.2022.e09748
            177. Huang T, Cheng  J, Bian D, Zheng Y. Fe-Au and Fe-Ag
               composites as candidates for biodegradable stent materials.   189. Lai Y, Li Y, Cao H, et al. Osteogenic magnesium incorporated
               J Biomed Mater Res B Appl Biomater. 2016;104(2):225-240.  into PLGA/TCP porous scaffold by 3D printing for repairing
               doi: 10.1002/jbm.b.33389                           challenging bone defect. Biomaterials. 2019;197:207-219.
                                                                  doi: 10.1016/j.biomaterials.2019.01.013
            178. Schinhammer M, Gerber I, Hänzi AC, Uggowitzer PJ. On
               the cytocompatibility of biodegradable Fe-based alloys.   190. Eugen G, Claus M, Anna-Maria S,  et al. Degradation of
               Mater Sci Eng C Mater Biol Appl. 2013;33(2):782-789.  3D-printed magnesium phosphate ceramics in vitro and
               doi: 10.1016/j.msec.2012.11.002                    a prognosis  on their bone regeneration potential.  Bioact
                                                                  Mater. 2023;19:376-391.
            179. Kupková M, Kupka M, Morovská Turoňová A, Oriňaková R.      doi: 10.1016/j.bioactmat.2022.04.015
               Microstructural,  mechanical and  corrosion  characteristics
               of degradable PM biomaterials made from copper-coated   191. Wang D, Liu L, Deng G, et al. Recent progress on additive
               iron powders. Materials. 2022;15(5).               manufacturing of multi-material structures with laser
               doi: 10.3390/ma15051913                            powder bed fusion.  Virtual Phys Prototyp. 2022;17(2):
                                                                  329-365.
            180. Scarcello E, Lison D. Are Fe-based stenting materials      doi: 10.1080/17452759.2022.2028343
               biocompatible? a critical review of in vitro and in vivo
               studies. J Funct Biomater. 2019;11(1).          192. Huang S, Wang B, Zhang X,  et al. High-purity weight-
               doi: 10.3390/jfb11010002                           bearing magnesium screw: translational application in the
                                                                  healing of femoral neck fracture.  Biomaterials. 2020;238:
            181. Bondareva  JV,  Dubinin  ON,  Kuzminova  YO,  et  al.   119829.
               Biodegradable iron-silicone implants produced by additive      doi: 10.1016/j.biomaterials.2020.119829
               manufacturing. Biomed Mater. 2022;17(3).
               doi: 10.1088/1748-605X/ac6124                   193. Rossig C, Angrisani N, Helmecke P, et al. In vivo evaluation
                                                                  of a magnesium-based degradable intramedullary nailing
            182. Hong D, Chou DT, Velikokhatnyi OI, et al. Binder-jetting   system in a sheep model. Acta Biomater. 2015;25:369-383.
               3D printing and alloy development of new biodegradable      doi: 10.1016/j.actbio.2015.07.025
               Fe-Mn-Ca/Mg alloys. Acta Biomater. 2016;45:375-386.
               doi: 10.1016/j.actbio.2016.08.032               194. Jahn K, Saito H, Taipaleenmaki H,  et al. Intramedullary
                                                                  Mg2Ag nails augment callus formation during fracture
            183. Nie Y, Chen G, Peng H, et al. In vitro and 48 weeks in vivo   healing in mice. Acta Biomater. 2016;36:350-360.
               performances of 3D printed porous Fe-30Mn biodegradable      doi: 10.1016/j.actbio.2016.03.041
               scaffolds. Acta Biomater. 2021;121:724-740.
               doi: 10.1016/j.actbio.2020.12.028               195. Ali W, Mehboob A, Han M-G, Chang S-H. Experimental
                                                                  study  on degradation  of  mechanical  properties  of
            184. Shuai C, Zan J, Qi F, et al. nMgO-incorporated PLLA bone   biodegradable magnesium alloy (AZ31) wires/poly(lactic
               scaffolds: enhanced crystallinity and neutralized acidic   acid) composite for bone fracture healing applications.
               products. Mater Des. 2019;174.                     Compos Struct. 2019;210:914-921.
               doi: 10.1016/j.matdes.2019.107801                  doi: 10.1016/j.compstruct.2018.12.011
            185. Anita Lett J, Sagadevan S, Léonard E,  et al. Bone tissue   196. Ran Z, Wang Y, Li J,  et al. 3D-printed biodegradable
               engineering  potentials  of  3D  printed  magnesium-  magnesium alloy scaffolds with zoledronic acid-loaded
               hydroxyapatite in polylactic acid composite scaffolds. Artif   ceramic composite coating promote osteoporotic bone
               Organs. 2021;45(12):1501-1512.                     defect repair. Int J Bioprint. 2023;9(5):769.
               doi: 10.1111/aor.14045                             doi: 10.18063/ijb.769

            Volume 10 Issue 3 (2024)                        59                                doi: 10.36922/ijb.2460
   62   63   64   65   66   67   68   69   70   71   72