Page 66 - IJB-10-3
P. 66
International Journal of Bioprinting 3D-printed biodegradable metals for bone regeneration
doi: 10.1016/j.msec.2016.11.138 for biomedical applications. J Mater Sci Mater Med.
2017;28(11):174.
151. Bowen PK, Seitz JM, Guillory RJ, 2nd, et al. Evaluation
of wrought Zn-Al alloys (1, 3, and 5 wt % Al) through doi: 10.1007/s10856-017-5973-9
mechanical and in vivo testing for stent applications. 162. Guleryuz LF, Ipek R, Arıtman I, Karaoglu S. Microstructure
J Biomed Mater Res B Appl Biomater. 2018;106(1):245-258. and mechanical properties of Zn-Mg alloys as implant
doi: 10.1002/jbm.b.33850 materials manufactured by powder metallurgy method. AIP
152. Lin J, Tong X, Shi Z, et al. A biodegradable Zn-1Cu- Conf. Proc. 2017;1809:020020.
0.1Ti alloy with antibacterial properties for orthopedic doi: 10.1063/1.4975435
applications. Acta Biomater. 2020;106:410-427. 163. Livingstone C. Zinc: physiology, deficiency, and parenteral
doi: 10.1016/j.actbio.2020.02.017 nutrition. Nutr Clin Pract. 2015;30(3):371-382.
153. Prakash C, Singh S, Verma K, Sidhu SS, Singh S. Synthesis doi: 10.1177/0884533615570376
and characterization of Mg-Zn-Mn-HA composite by 164. Manzoor F, Golbang A, Dixon D, et al. 3D printed
spark plasma sintering process for orthopedic applications. strontium and zinc doped hydroxyapatite loaded PEEK for
Vacuum. 2018;155:578-584. craniomaxillofacial implants. Polymers. 2022;14(7).
doi: 10.1016/j.vacuum.2018.06.063 doi: 10.3390/polym14071376
154. Wen P, Voshage M, Jauer L, et al. Laser additive manufacturing 165. Milivojevic M, Chen K, Radovanovic Z, et al. Enhanced
of Zn metal parts for biodegradable applications: processing, antimicrobial properties and bioactivity of 3D-printed
formation quality and mechanical properties. Mater Des. titanium scaffolds by multilayer bioceramic coating for large
2018;155:36-45. bone defects. Biomed Mater. 2023;18(6).
doi: 10.1016/j.matdes.2018.05.057 doi: 10.1088/1748-605X/ad02d2
155. Zhao D, Han C, Peng B, et al. Corrosion fatigue behavior 166. Pound BG. The use of electrochemical techniques to
and anti-fatigue mechanisms of an additively manufactured evaluate the corrosion performance of metallic biomedical
biodegradable zinc-magnesium gyroid scaffold. Acta materials and devices. J Biomed Mater Res B Appl Biomater.
Biomater. 2022;153:614-629. 2019;107(4):1189-1198.
doi: 10.1016/j.actbio.2022.09.047 doi: 10.1002/jbm.b.34212
156. Campos Becerra LH, Hernandez Rodriguez MAL, Esquivel 167. Gotman I. Characteristics of metals used in implants.
Solis H, Lesso Arroyo R, Torres Castro A. Bio-inspired J Endourol. 1997;11(6):383-389.
biomaterial Mg-Zn-Ca: a review of the main mechanical doi: 10.1089/end.1997.11.383
and biological properties of Mg-based alloys. Biomed Phys
Eng Express. 2020;6(4):042001. 168. Seitz JM, Durisin M, Goldman J, Drelich JW. Recent
doi: 10.1088/2057-1976/ab9426 advances in biodegradable metals for medical sutures: a
critical review. Adv Healthc Mater. 2015;4(13):1915-1936.
157. Zhang S, Tang C, Feng J, et al. The in vivo and in vitro corrosion doi: 10.1002/adhm.201500189
behavior of MgO/Mg-Zn-Ca composite with different Zn/
Ca ratio. Front Bioeng Biotechnol. 2023;11:1222722. 169. Chen Q, Thouas GA. Metallic implant biomaterials. Mater
doi: 10.3389/fbioe.2023.1222722 Sci Eng R Rep. 2015;87:1-57.
doi: 10.1016/j.mser.2014.10.001
158. Mostaed E, Sikora-Jasinska M, Mostaed A, et al. Novel Zn-
based alloys for biodegradable stent applications: design, 170. Kraus T, Moszner F, Fischerauer S, et al. Biodegradable Fe-
development and in vitro degradation. J Mech Behav Biomed based alloys for use in osteosynthesis: outcome of an in vivo
Mater. 2016;60:581-602. study after 52 weeks. Acta Biomater. 2014;10(7):3346-3353.
doi: 10.1016/j.jmbbm.2016.03.018 doi: 10.1016/j.actbio.2014.04.007
159. Gong H, Wang K, Strich R, Zhou JG. In vitro biodegradation 171. Hermawan H, Dubé D, Mantovani D. Degradable metallic
behavior, mechanical properties, and cytotoxicity of biomaterials: design and development of Fe-Mn alloys for
biodegradable Zn-Mg alloy. J Biomed Mater Res B Appl stents. J Biomed Mater Res A. 2010;93(1):1-11.
Biomater. 2015;103(8):1632-1640. doi: 10.1002/jbm.a.32224
doi: 10.1002/jbm.b.33341 172. Schinhammer M, Hanzi AC, Loffler JF, Uggowitzer PJ.
160. Vojtěch D, Kubásek J, Serák J, Novák P. Mechanical and Design strategy for biodegradable Fe-based alloys for
corrosion properties of newly developed biodegradable Zn- medical applications. Acta Biomater. 2010;6(5):1705-1713.
based alloys for bone fixation. Acta Biomater. 2011;7(9): doi: 10.1016/j.actbio.2009.07.039
3515-3522. 173. Hermawan H, Dubé D, Mantovani D. Development of
doi: 10.1016/j.actbio.2011.05.008
degradable Fe-35Mn alloy for biomedical application. Adv
161. Katarivas Levy G, Leon A, Kafri A, et al. Evaluation of Mater Res. 2006;15-17:107-112.
biodegradable Zn-1%Mg and Zn-1%Mg-0.5%Ca alloys doi: 10.4028/www.scientific.net/AMR.15-17.107
Volume 10 Issue 3 (2024) 58 doi: 10.36922/ijb.2460

