Page 66 - IJB-10-3
P. 66

International Journal of Bioprinting                      3D-printed biodegradable metals for bone regeneration




               doi: 10.1016/j.msec.2016.11.138                    for biomedical  applications.  J Mater Sci Mater Med.
                                                                  2017;28(11):174.
            151. Bowen PK, Seitz JM, Guillory RJ, 2nd,  et al. Evaluation
               of  wrought  Zn-Al  alloys  (1,  3,  and  5  wt  %  Al)  through      doi: 10.1007/s10856-017-5973-9
               mechanical and in vivo testing for stent applications.    162. Guleryuz LF, Ipek R, Arıtman I, Karaoglu S. Microstructure
               J Biomed Mater Res B Appl Biomater. 2018;106(1):245-258.  and mechanical properties of Zn-Mg alloys as implant
               doi: 10.1002/jbm.b.33850                           materials manufactured by powder metallurgy method. AIP
            152. Lin J, Tong X, Shi Z,  et al. A biodegradable Zn-1Cu-  Conf. Proc. 2017;1809:020020.
               0.1Ti alloy with antibacterial properties for orthopedic      doi: 10.1063/1.4975435
               applications. Acta Biomater. 2020;106:410-427.  163. Livingstone C. Zinc: physiology, deficiency, and parenteral
               doi: 10.1016/j.actbio.2020.02.017                  nutrition. Nutr Clin Pract. 2015;30(3):371-382.
            153. Prakash C, Singh S, Verma K, Sidhu SS, Singh S. Synthesis      doi: 10.1177/0884533615570376
               and characterization of Mg-Zn-Mn-HA composite by   164. Manzoor F, Golbang A, Dixon D,  et al. 3D printed
               spark plasma sintering process for orthopedic applications.   strontium and zinc doped hydroxyapatite loaded PEEK for
               Vacuum. 2018;155:578-584.                          craniomaxillofacial implants. Polymers. 2022;14(7).
               doi: 10.1016/j.vacuum.2018.06.063                  doi: 10.3390/polym14071376
            154. Wen P, Voshage M, Jauer L, et al. Laser additive manufacturing   165. Milivojevic M, Chen K, Radovanovic Z,  et al. Enhanced
               of Zn metal parts for biodegradable applications: processing,   antimicrobial  properties  and  bioactivity  of  3D-printed
               formation quality and mechanical properties.  Mater Des.   titanium scaffolds by multilayer bioceramic coating for large
               2018;155:36-45.                                    bone defects. Biomed Mater. 2023;18(6).
               doi: 10.1016/j.matdes.2018.05.057                  doi: 10.1088/1748-605X/ad02d2
            155. Zhao D, Han C, Peng B, et al. Corrosion fatigue behavior   166. Pound  BG.  The  use  of  electrochemical  techniques  to
               and anti-fatigue mechanisms of an additively manufactured   evaluate the corrosion performance of metallic biomedical
               biodegradable zinc-magnesium gyroid scaffold.  Acta   materials and devices. J Biomed Mater Res B Appl Biomater.
               Biomater. 2022;153:614-629.                        2019;107(4):1189-1198.
               doi: 10.1016/j.actbio.2022.09.047                  doi: 10.1002/jbm.b.34212
            156. Campos Becerra LH, Hernandez Rodriguez MAL, Esquivel   167. Gotman I. Characteristics of metals used in implants.
               Solis H, Lesso Arroyo R, Torres Castro A. Bio-inspired   J Endourol. 1997;11(6):383-389.
               biomaterial Mg-Zn-Ca: a review of  the main mechanical      doi: 10.1089/end.1997.11.383
               and biological properties of Mg-based alloys. Biomed Phys
               Eng Express. 2020;6(4):042001.                  168. Seitz JM, Durisin M, Goldman J, Drelich JW. Recent
               doi: 10.1088/2057-1976/ab9426                      advances in biodegradable metals for medical sutures: a
                                                                  critical review. Adv Healthc Mater. 2015;4(13):1915-1936.
            157. Zhang S, Tang C, Feng J, et al. The in vivo and in vitro corrosion      doi: 10.1002/adhm.201500189
               behavior of MgO/Mg-Zn-Ca composite with different Zn/
               Ca ratio. Front Bioeng Biotechnol. 2023;11:1222722.  169. Chen Q, Thouas GA. Metallic implant biomaterials. Mater
               doi: 10.3389/fbioe.2023.1222722                    Sci Eng R Rep. 2015;87:1-57.
                                                                  doi: 10.1016/j.mser.2014.10.001
            158. Mostaed E, Sikora-Jasinska M, Mostaed A, et al. Novel Zn-
               based alloys for biodegradable stent applications: design,   170. Kraus T, Moszner F, Fischerauer S, et al. Biodegradable Fe-
               development and in vitro degradation. J Mech Behav Biomed   based alloys for use in osteosynthesis: outcome of an in vivo
               Mater. 2016;60:581-602.                            study after 52 weeks. Acta Biomater. 2014;10(7):3346-3353.
               doi: 10.1016/j.jmbbm.2016.03.018                   doi: 10.1016/j.actbio.2014.04.007
            159. Gong H, Wang K, Strich R, Zhou JG. In vitro biodegradation   171. Hermawan H, Dubé D, Mantovani D. Degradable metallic
               behavior, mechanical properties, and cytotoxicity of   biomaterials: design and development of Fe-Mn alloys for
               biodegradable Zn-Mg alloy.  J Biomed Mater Res B Appl   stents. J Biomed Mater Res A. 2010;93(1):1-11.
               Biomater. 2015;103(8):1632-1640.                   doi: 10.1002/jbm.a.32224
               doi: 10.1002/jbm.b.33341                        172. Schinhammer M, Hanzi AC, Loffler JF, Uggowitzer PJ.
            160. Vojtěch D, Kubásek J, Serák J, Novák P. Mechanical and   Design strategy for biodegradable Fe-based alloys for
               corrosion properties of newly developed biodegradable Zn-  medical applications. Acta Biomater. 2010;6(5):1705-1713.
               based alloys for bone fixation.  Acta Biomater. 2011;7(9):      doi: 10.1016/j.actbio.2009.07.039
               3515-3522.                                      173. Hermawan  H,  Dubé  D,  Mantovani  D.  Development  of
               doi: 10.1016/j.actbio.2011.05.008
                                                                  degradable Fe-35Mn alloy for biomedical application. Adv
            161. Katarivas Levy G, Leon A, Kafri A,  et al. Evaluation of   Mater Res. 2006;15-17:107-112.
               biodegradable  Zn-1%Mg  and Zn-1%Mg-0.5%Ca  alloys      doi: 10.4028/www.scientific.net/AMR.15-17.107


            Volume 10 Issue 3 (2024)                        58                                doi: 10.36922/ijb.2460
   61   62   63   64   65   66   67   68   69   70   71