Page 61 - IJB-10-3
P. 61

International Journal of Bioprinting                      3D-printed biodegradable metals for bone regeneration




            34.  Qiao W, Wong KHM, Shen J, et al. TRPM7 kinase-mediated   46.  Pierson D, Edick J, Tauscher A, et al. A simplified in vivo
               immunomodulation in macrophage plays a central role in   approach  for  evaluating  the  bioabsorbable  behavior  of
               magnesium ion-induced bone regeneration. Nat Commun.   candidate stent materials.  J Biomed Mater Res B Appl
               2021;12(1):2885.                                   Biomater. 2012;100(1):58-67.
               doi: 10.1038/s41467-021-23005-2                    doi: 10.1002/jbm.b.31922
            35.  Jeng SS, Chen YH. Association of zinc with anemia.   47.  Sikora-Jasinska M, Paternoster C, Mostaed E,  et al.
               Nutrients. 2022;14(22).                            Synthesis, mechanical properties and corrosion behavior
               doi: 10.3390/nu14224918                            of powder metallurgy processed Fe/Mg(2)Si composites for
            36.  Skalny AV, Aschner M, Silina EV,  et al. The role of trace   biodegradable implant applications. Mater Sci Eng C Mater
               elements  and  minerals  in  osteoporosis:  a  review  of   Biol Appl. 2017;81:511-521.
               epidemiological and laboratory findings.  Biomolecules.      doi: 10.1016/j.msec.2017.07.049
               2023;13(6).                                     48.  Ru Q, Li Y, Xie W,  et al. Fighting age-related orthopedic
               doi: 10.3390/biom13061006                          diseases: focusing on ferroptosis. Bone Res. 2023;11(1):12.
            37.  Kraus  VB.  Osteoarthritis:  the  zinc  link.  Nature.      doi: 10.1038/s41413-023-00247-y
               2014;507(7493):441-442.                         49.  Adeyemi A, Akinlabi ET, Mahamood RM. Powder bed
               doi: 10.1038/507441a                               based laser additive manufacturing process of stainless steel:
            38.  Kambe T, Tsuji T, Hashimoto A, Itsumura N.  The   a review. Mate Today Proc. 2018;5(9):18510-18517.
               physiological,  biochemical,  and  molecular  roles  of  zinc      doi: 10.1016/j.matpr.2018.06.193
               transporters in zinc homeostasis and metabolism.  Physiol   50.  Sotoudehbagha P, Sheibani S, Khakbiz M, Ebrahimi-
               Rev. 2015;95(3):749-784.                           Barough S, Hermawan H. Novel antibacterial biodegradable
               doi: 10.1152/physrev.00035.2014                    Fe-Mn-Ag alloys produced by mechanical alloying. Mater
            39.  Liu Q, Li M, Wang S,  et al. Recent advances of osterix   Sci Eng C Mater Biol Appl. 2018;88:88-94.
               transcription factor in osteoblast differentiation and bone      doi: 10.1016/j.msec.2018.03.005
               formation. Front Cell Dev Biol. 2020;8:601224.  51.  Rewak-Soroczynska J, Dorotkiewicz-Jach A, Drulis-Kawa
               doi: 10.3389/fcell.2020.601224                     Z, Wiglusz RJ. Culture media composition influences the
            40.  Fu X, Li Y, Huang T, et al. Runx2/osterix and zinc uptake   antibacterial effect of silver, cupric, and zinc ions against
               synergize to orchestrate osteogenic differentiation and   Pseudomonas aeruginosa. Biomolecules. 2022;12(7).
               citrate containing bone apatite formation. Adv Sci (Weinh).      doi: 10.3390/biom12070963
               2018;5(4):1700755.                              52.  Chen K, Zhou G, Li Q,  et al. In vitro degradation,
               doi: 10.1002/advs.201700755                        biocompatibility and antibacterial properties of pure
            41.  Rył A, Miazgowski T, Szylińska A, et al. Bone health in aging   zinc: assessing the potential of Zn as a guided bone
               men: does zinc and cuprum level matter?  Biomolecules.   regeneration  membrane.  J Mater Chem B.  2021;9(25):
               2021;11(2).                                        5114-5127.
               doi: 10.3390/biom11020237                          doi: 10.1039/D1TB00596K
            42.  Park KH, Park B, Yoon DS, et al. Zinc inhibits osteoclast   53.  Jia B, Zhang Z, Zhuang Y, et al. High-strength biodegradable
               differentiation by suppression of Ca2+-Calcineurin-NFATc1   zinc  alloy  implants  with  antibacterial and  osteogenic
               signaling pathway. Cell Commun Signal. 2013;11:74.  properties  for  the treatment  of  MRSA-induced rat
               doi: 10.1186/1478-811x-11-74                       osteomyelitis. Biomaterials. 2022;287:121663.
                                                                  doi: 10.1016/j.biomaterials.2022.121663
            43.  Wang S, Gu R, Wang F, et al. 3D-printed PCL/Zn scaffolds
               for bone regeneration with a dose-dependent effect on   54.  Zhang Y, Wu H, Yuan B, et al. Enhanced osteogenic activity and
               osteogenesis and osteoclastogenesis.  Mater Today Bio.   antibacterial performance in vitro of polyetheretherketone
               2022;13:100202.                                    by plasma-induced graft polymerization of acrylic acid and
               doi: 10.1016/j.mtbio.2021.100202                   incorporation of zinc ions.  J Mater Chem B. 2021;9(36):
                                                                  7506-7515.
            44.  Wang S, Li R, Xia D, et al. The impact of Zn-doped synthetic      doi: 10.1039/D1TB01349A
               polymer  materials  on bone  regeneration:  a  systematic
               review. Stem Cell Res Ther. 2021;12(1):123.     55.  Mutlu N, Liverani L, Kurtuldu F, Galusek D, Boccaccini
               doi: 10.1186/s13287-021-02195-y                    AR. Zinc improves antibacterial, anti-inflammatory and cell
                                                                  motility activity of chitosan for wound healing applications.
            45.  Li C, Sun F, Tian J, et al. Continuously released Zn(2+) in
               3D-printed PLGA/β-TCP/Zn scaffolds for bone defect   Int J Biol Macromol. 2022;213:845-857.
               repair by improving osteoinductive and anti-inflammatory      doi: 10.1016/j.ijbiomac.2022.05.199
               properties. Bioact Mater. 2023;24:361-375.      56.  Rodwihok C, Suwannakeaw M, Charoensri K,  et al.
               doi: 10.1016/j.bioactmat.2022.12.015               Alkali/zinc-activated fly ash nanocomposites for dye


            Volume 10 Issue 3 (2024)                        53                                doi: 10.36922/ijb.2460
   56   57   58   59   60   61   62   63   64   65   66