Page 61 - IJB-10-3
P. 61
International Journal of Bioprinting 3D-printed biodegradable metals for bone regeneration
34. Qiao W, Wong KHM, Shen J, et al. TRPM7 kinase-mediated 46. Pierson D, Edick J, Tauscher A, et al. A simplified in vivo
immunomodulation in macrophage plays a central role in approach for evaluating the bioabsorbable behavior of
magnesium ion-induced bone regeneration. Nat Commun. candidate stent materials. J Biomed Mater Res B Appl
2021;12(1):2885. Biomater. 2012;100(1):58-67.
doi: 10.1038/s41467-021-23005-2 doi: 10.1002/jbm.b.31922
35. Jeng SS, Chen YH. Association of zinc with anemia. 47. Sikora-Jasinska M, Paternoster C, Mostaed E, et al.
Nutrients. 2022;14(22). Synthesis, mechanical properties and corrosion behavior
doi: 10.3390/nu14224918 of powder metallurgy processed Fe/Mg(2)Si composites for
36. Skalny AV, Aschner M, Silina EV, et al. The role of trace biodegradable implant applications. Mater Sci Eng C Mater
elements and minerals in osteoporosis: a review of Biol Appl. 2017;81:511-521.
epidemiological and laboratory findings. Biomolecules. doi: 10.1016/j.msec.2017.07.049
2023;13(6). 48. Ru Q, Li Y, Xie W, et al. Fighting age-related orthopedic
doi: 10.3390/biom13061006 diseases: focusing on ferroptosis. Bone Res. 2023;11(1):12.
37. Kraus VB. Osteoarthritis: the zinc link. Nature. doi: 10.1038/s41413-023-00247-y
2014;507(7493):441-442. 49. Adeyemi A, Akinlabi ET, Mahamood RM. Powder bed
doi: 10.1038/507441a based laser additive manufacturing process of stainless steel:
38. Kambe T, Tsuji T, Hashimoto A, Itsumura N. The a review. Mate Today Proc. 2018;5(9):18510-18517.
physiological, biochemical, and molecular roles of zinc doi: 10.1016/j.matpr.2018.06.193
transporters in zinc homeostasis and metabolism. Physiol 50. Sotoudehbagha P, Sheibani S, Khakbiz M, Ebrahimi-
Rev. 2015;95(3):749-784. Barough S, Hermawan H. Novel antibacterial biodegradable
doi: 10.1152/physrev.00035.2014 Fe-Mn-Ag alloys produced by mechanical alloying. Mater
39. Liu Q, Li M, Wang S, et al. Recent advances of osterix Sci Eng C Mater Biol Appl. 2018;88:88-94.
transcription factor in osteoblast differentiation and bone doi: 10.1016/j.msec.2018.03.005
formation. Front Cell Dev Biol. 2020;8:601224. 51. Rewak-Soroczynska J, Dorotkiewicz-Jach A, Drulis-Kawa
doi: 10.3389/fcell.2020.601224 Z, Wiglusz RJ. Culture media composition influences the
40. Fu X, Li Y, Huang T, et al. Runx2/osterix and zinc uptake antibacterial effect of silver, cupric, and zinc ions against
synergize to orchestrate osteogenic differentiation and Pseudomonas aeruginosa. Biomolecules. 2022;12(7).
citrate containing bone apatite formation. Adv Sci (Weinh). doi: 10.3390/biom12070963
2018;5(4):1700755. 52. Chen K, Zhou G, Li Q, et al. In vitro degradation,
doi: 10.1002/advs.201700755 biocompatibility and antibacterial properties of pure
41. Rył A, Miazgowski T, Szylińska A, et al. Bone health in aging zinc: assessing the potential of Zn as a guided bone
men: does zinc and cuprum level matter? Biomolecules. regeneration membrane. J Mater Chem B. 2021;9(25):
2021;11(2). 5114-5127.
doi: 10.3390/biom11020237 doi: 10.1039/D1TB00596K
42. Park KH, Park B, Yoon DS, et al. Zinc inhibits osteoclast 53. Jia B, Zhang Z, Zhuang Y, et al. High-strength biodegradable
differentiation by suppression of Ca2+-Calcineurin-NFATc1 zinc alloy implants with antibacterial and osteogenic
signaling pathway. Cell Commun Signal. 2013;11:74. properties for the treatment of MRSA-induced rat
doi: 10.1186/1478-811x-11-74 osteomyelitis. Biomaterials. 2022;287:121663.
doi: 10.1016/j.biomaterials.2022.121663
43. Wang S, Gu R, Wang F, et al. 3D-printed PCL/Zn scaffolds
for bone regeneration with a dose-dependent effect on 54. Zhang Y, Wu H, Yuan B, et al. Enhanced osteogenic activity and
osteogenesis and osteoclastogenesis. Mater Today Bio. antibacterial performance in vitro of polyetheretherketone
2022;13:100202. by plasma-induced graft polymerization of acrylic acid and
doi: 10.1016/j.mtbio.2021.100202 incorporation of zinc ions. J Mater Chem B. 2021;9(36):
7506-7515.
44. Wang S, Li R, Xia D, et al. The impact of Zn-doped synthetic doi: 10.1039/D1TB01349A
polymer materials on bone regeneration: a systematic
review. Stem Cell Res Ther. 2021;12(1):123. 55. Mutlu N, Liverani L, Kurtuldu F, Galusek D, Boccaccini
doi: 10.1186/s13287-021-02195-y AR. Zinc improves antibacterial, anti-inflammatory and cell
motility activity of chitosan for wound healing applications.
45. Li C, Sun F, Tian J, et al. Continuously released Zn(2+) in
3D-printed PLGA/β-TCP/Zn scaffolds for bone defect Int J Biol Macromol. 2022;213:845-857.
repair by improving osteoinductive and anti-inflammatory doi: 10.1016/j.ijbiomac.2022.05.199
properties. Bioact Mater. 2023;24:361-375. 56. Rodwihok C, Suwannakeaw M, Charoensri K, et al.
doi: 10.1016/j.bioactmat.2022.12.015 Alkali/zinc-activated fly ash nanocomposites for dye
Volume 10 Issue 3 (2024) 53 doi: 10.36922/ijb.2460

