Page 65 - IJB-10-3
P. 65
International Journal of Bioprinting 3D-printed biodegradable metals for bone regeneration
127. Jung O, Porchetta D, Schroeder ML, et al. In vivo simulation 139. Molenda M, Kolmas J. The role of zinc in bone tissue
of magnesium degradability using a new fluid dynamic health and regeneration-a review. Biol Trace Elem Res.
bench testing approach. Int J Mol Sci. 2019;20(19). 2023;201(12):5640-5651.
doi: 10.3390/ijms20194859 doi: 10.1007/s12011-023-03631-1
128. Tan Q, Atrens A, Mo N, Zhang M-X. Oxidation of 140. Zhao C, Wu H, Hou P, et al. Enhanced corrosion resistance
magnesium alloys at elevated temperatures in air: a review. and antibacterial property of Zn doped DCPD coating on
Corros Sci. 2016;112:734-759. biodegradable Mg. Mater Lett. 2016;180:42-46.
doi: 10.1016/j.corsci.2016.06.018 doi: 10.1016/j.matlet.2016.04.035
129. Cao F, Song G-L, Atrens A. Corrosion and passivation of 141. Yang H, Qu X, Lin W, et al. In vitro and in vivo studies on
magnesium alloys. Corros Sci. 2016;111:835-845. zinc-hydroxyapatite composites as novel biodegradable
doi: 10.1016/j.corsci.2016.05.041 metal matrix composite for orthopedic applications. Acta
Biomater. 2018;71:200-214.
130. Ghali E, Dietzel W, Kainer K-U. General and localized
corrosion of magnesium alloys: a critical review. J Mater Eng doi: 10.1016/j.actbio.2018.03.007
Perform. 2013;22(10):2875-2891. 142. Yuan W, Li B, Chen D, et al. Formation mechanism,
doi: 10.1007/s11665-013-0730-9 corrosion behavior, and cytocompatibility of microarc
oxidation coating on absorbable high-purity zinc. ACS
131. Draxler J, Martinelli E, Weinberg AM, et al. The potential
of isotopically enriched magnesium to study bone Biomater Sci Eng. 2019;5(2):487-497.
implant degradation in vivo. Acta Biomater. 2017;51: doi: 10.1021/acsbiomaterials.8b01131
526-536. 143. Ma J, Zhao N, Zhu D. Endothelial cellular responses
doi: 10.1016/j.actbio.2017.01.054 to biodegradable metal zinc. ACS Biomater Sci Eng.
2015;1(11):1174-1182.
132. Golafshan N, Willemsen K, Kadumudi FB, et al. 3D-printed
regenerative magnesium phosphate implant ensures doi: 10.1021/acsbiomaterials.5b00319
stability and restoration of hip dysplasia. Adv Healthc Mater. 144. Ma J, Zhao N, Zhu D. Bioabsorbable zinc ion induced
2021;10(21):e2101051. biphasic cellular responses in vascular smooth muscle cells.
doi: 10.1002/adhm.202101051 Sci Rep. 2016;6:26661.
doi: 10.1038/srep26661
133. Zhao S, Xie K, Guo Y, et al. Fabrication and biological
activity of 3D-printed polycaprolactone/magnesium porous 145. Katarivas Levy G, Goldman J, Aghion E. The prospects of
scaffolds for critical size bone defect repair. ACS Biomater zinc as a structural material for biodegradable implants—a
Sci Eng. 2020;6(9):5120-5131. review paper. Metals. 2017;7(10).
doi: 10.1021/acsbiomaterials.9b01911 doi: 10.3390/met7100402
134. Xie K, Wang N, Guo Y, et al. Additively manufactured 146. Kim J, Oh S, Ki H. Effect of keyhole geometry and dynamics
biodegradable porous magnesium implants for elimination in zero-gap laser welding of zinc-coated steel sheets. J Mater
of implant-related infections: an in vitro and in vivo study. Process Technol. 2016;232:131-141.
Bioact Mater. 2022;8:140-152. doi: 10.1016/j.jmatprotec.2016.01.028
doi: 10.1016/j.bioactmat.2021.06.032
147. Jablonská E, Vojtěch D, Fousová M, et al. Influence of
135. Qin Y, Yang H, Liu A, et al. Processing optimization, surface pre-treatment on the cytocompatibility of a novel
mechanical properties, corrosion behavior and biodegradable ZnMg alloy. Mater Sci Eng C Mater Biol Appl.
cytocompatibility of additively manufactured Zn-0.7Li 2016;68:198-204.
biodegradable metals. Acta Biomater. 2022;142:388-401. doi: 10.1016/j.msec.2016.05.114
doi: 10.1016/j.actbio.2022.01.049
148. Yuan W, Xia D, Wu S, et al. A review on current research
136. Mostaed E, Sikora-Jasinska M, Drelich JW, Vedani M. Zinc- status of the surface modification of Zn-based biodegradable
based alloys for degradable vascular stent applications. Acta metals. Bioact Mater. 2022;7:192-216.
Biomater. 2018;71:1-23. doi: 10.1016/j.bioactmat.2021.05.018
doi: 10.1016/j.actbio.2018.03.005
149. Yuan W, Xia D, Zheng Y, et al. Controllable biodegradation
137. Toledano M, Vallecillo-Rivas M, Osorio MT, et al. Zn- and enhanced osseointegration of ZrO2-nanofilm coated
containing membranes for guided bone regeneration in Zn-Li alloy: In vitro and in vivo studies. Acta Biomater.
dentistry. Polymers. 2021;13(11). 2020;105:290-303.
doi: 10.3390/polym13111797 doi: 10.1016/j.actbio.2020.01.022
138. Levaot N, Hershfinkel M. How cellular Zn(2+) signaling 150. Bakhsheshi-Rad HR, Hamzah E, Low HT, et al. Fabrication
drives physiological functions. Cell Calcium. 2018;75: of biodegradable Zn-Al-Mg alloy: Mechanical properties,
53-63. corrosion behavior, cytotoxicity and antibacterial activities.
doi: 10.1016/j.ceca.2018.08.004 Mater Sci Eng C Mater Biol Appl. 2017;73:215-219.
Volume 10 Issue 3 (2024) 57 doi: 10.36922/ijb.2460

