Page 65 - IJB-10-3
P. 65

International Journal of Bioprinting                      3D-printed biodegradable metals for bone regeneration




            127. Jung O, Porchetta D, Schroeder ML, et al. In vivo simulation   139. Molenda M, Kolmas J.  The role of zinc in bone tissue
               of magnesium degradability using a new fluid dynamic   health  and  regeneration-a  review.  Biol Trace Elem Res.
               bench testing approach. Int J Mol Sci. 2019;20(19).  2023;201(12):5640-5651.
               doi: 10.3390/ijms20194859                          doi: 10.1007/s12011-023-03631-1
            128. Tan Q, Atrens A, Mo N, Zhang M-X. Oxidation of   140. Zhao C, Wu H, Hou P, et al. Enhanced corrosion resistance
               magnesium alloys at elevated temperatures in air: a review.   and antibacterial property of Zn doped DCPD coating on
               Corros Sci. 2016;112:734-759.                      biodegradable Mg. Mater Lett. 2016;180:42-46.
               doi: 10.1016/j.corsci.2016.06.018                  doi: 10.1016/j.matlet.2016.04.035
            129. Cao F, Song G-L, Atrens A. Corrosion and passivation of   141. Yang H, Qu X, Lin W, et al. In vitro and in vivo studies on
               magnesium alloys. Corros Sci. 2016;111:835-845.    zinc-hydroxyapatite composites as novel biodegradable
               doi: 10.1016/j.corsci.2016.05.041                  metal matrix composite for orthopedic applications.  Acta
                                                                  Biomater. 2018;71:200-214.
            130. Ghali E, Dietzel W, Kainer K-U. General and localized
               corrosion of magnesium alloys: a critical review. J Mater Eng      doi: 10.1016/j.actbio.2018.03.007
               Perform. 2013;22(10):2875-2891.                 142. Yuan W, Li B, Chen D,  et al. Formation mechanism,
               doi: 10.1007/s11665-013-0730-9                     corrosion behavior, and cytocompatibility of microarc
                                                                  oxidation coating  on  absorbable  high-purity  zinc.  ACS
            131. Draxler J, Martinelli E, Weinberg AM, et al. The potential
               of  isotopically  enriched  magnesium  to  study  bone   Biomater Sci Eng. 2019;5(2):487-497.
               implant  degradation  in  vivo.  Acta Biomater.  2017;51:      doi: 10.1021/acsbiomaterials.8b01131
               526-536.                                        143. Ma  J,  Zhao  N,  Zhu  D.  Endothelial  cellular  responses
               doi: 10.1016/j.actbio.2017.01.054                  to biodegradable metal zinc.  ACS Biomater Sci Eng.
                                                                  2015;1(11):1174-1182.
            132. Golafshan N, Willemsen K, Kadumudi FB, et al. 3D-printed
               regenerative magnesium phosphate implant ensures      doi: 10.1021/acsbiomaterials.5b00319
               stability and restoration of hip dysplasia. Adv Healthc Mater.   144. Ma J, Zhao N, Zhu D. Bioabsorbable zinc ion induced
               2021;10(21):e2101051.                              biphasic cellular responses in vascular smooth muscle cells.
               doi: 10.1002/adhm.202101051                        Sci Rep. 2016;6:26661.
                                                                  doi: 10.1038/srep26661
            133. Zhao S, Xie K, Guo Y,  et al. Fabrication and biological
               activity of 3D-printed polycaprolactone/magnesium porous   145. Katarivas Levy G, Goldman J, Aghion E. The prospects of
               scaffolds for critical size bone defect repair. ACS Biomater   zinc as a structural material for biodegradable implants—a
               Sci Eng. 2020;6(9):5120-5131.                      review paper. Metals. 2017;7(10).
               doi: 10.1021/acsbiomaterials.9b01911               doi: 10.3390/met7100402
            134. Xie K, Wang N, Guo Y,  et al. Additively manufactured   146. Kim J, Oh S, Ki H. Effect of keyhole geometry and dynamics
               biodegradable porous magnesium implants for elimination   in zero-gap laser welding of zinc-coated steel sheets. J Mater
               of implant-related infections: an in vitro and in vivo study.   Process Technol. 2016;232:131-141.
               Bioact Mater. 2022;8:140-152.                      doi: 10.1016/j.jmatprotec.2016.01.028
               doi: 10.1016/j.bioactmat.2021.06.032
                                                               147. Jablonská E, Vojtěch D, Fousová M,  et al. Influence of
            135. Qin Y,  Yang H, Liu  A,  et al. Processing  optimization,   surface pre-treatment on the cytocompatibility of a novel
               mechanical  properties,  corrosion  behavior  and  biodegradable ZnMg alloy. Mater Sci Eng C Mater Biol Appl.
               cytocompatibility of additively manufactured Zn-0.7Li   2016;68:198-204.
               biodegradable metals. Acta Biomater. 2022;142:388-401.     doi: 10.1016/j.msec.2016.05.114
               doi: 10.1016/j.actbio.2022.01.049
                                                               148. Yuan W, Xia D, Wu S, et al. A review on current research
            136. Mostaed E, Sikora-Jasinska M, Drelich JW, Vedani M. Zinc-  status of the surface modification of Zn-based biodegradable
               based alloys for degradable vascular stent applications. Acta   metals. Bioact Mater. 2022;7:192-216.
               Biomater. 2018;71:1-23.                            doi: 10.1016/j.bioactmat.2021.05.018
               doi: 10.1016/j.actbio.2018.03.005
                                                               149. Yuan W, Xia D, Zheng Y, et al. Controllable biodegradation
            137. Toledano M, Vallecillo-Rivas M, Osorio MT,  et al. Zn-  and enhanced osseointegration of ZrO2-nanofilm coated
               containing membranes for guided bone regeneration in   Zn-Li  alloy: In  vitro and  in vivo studies.  Acta  Biomater.
               dentistry. Polymers. 2021;13(11).                  2020;105:290-303.
               doi: 10.3390/polym13111797                         doi: 10.1016/j.actbio.2020.01.022
            138. Levaot N, Hershfinkel M. How cellular Zn(2+) signaling   150. Bakhsheshi-Rad HR, Hamzah E, Low HT, et al. Fabrication
               drives physiological functions.  Cell Calcium. 2018;75:   of biodegradable Zn-Al-Mg alloy: Mechanical properties,
               53-63.                                             corrosion behavior, cytotoxicity and antibacterial activities.
               doi: 10.1016/j.ceca.2018.08.004                    Mater Sci Eng C Mater Biol Appl. 2017;73:215-219.



            Volume 10 Issue 3 (2024)                        57                                doi: 10.36922/ijb.2460
   60   61   62   63   64   65   66   67   68   69   70