Page 68 - IJB-10-3
P. 68

International Journal of Bioprinting                      3D-printed biodegradable metals for bone regeneration




            197. Acar B, Kose O, Turan A, et al. Comparison of bioabsorbable   208. Sing SL, An J, Yeong WY, Wiria FE. Laser and electron-beam
               magnesium versus titanium screw fixation for modified   powder-bed additive manufacturing of metallic implants: a
               distal chevron osteotomy in hallux valgus. BioMed Res Int.   review  on  processes,  materials  and  designs.  J Orthop Res.
               2018;2018:5242806.                                 2016;34(3):369-385.
               doi: 10.1155/2018/5242806                          doi: 10.1002/jor.23075
            198. Chen L, Lin Z, Wang M, et al. Treatment of trauma-induced   209. Witte F, Reifenrath J, Müller PP,  et al. Cartilage repair
               femoral head  necrosis with biodegradable pure Mg  screw-  on magnesium scaffolds used as a subchondral bone
               fixed pedicle iliac bone flap. J Orthop Transl. 2019;17:133-137.  replacement. Materwiss Werksttech. 2006;37(6):504-508.
               doi: 10.1016/j.jot.2019.01.004                     doi: 10.1002/mawe.200600027
            199. Lee  J-W,  Han  H-S,  Han  K-J,  et  al.  Long-term  clinical   210. Newman AP. Articular cartilage repair.  Am J Sports Med.
               study and multiscale analysis of in vivo biodegradation   1998;26(2):309-324.
               mechanism  of Mg alloy.  Proc Natl Acad Sci. 2016;113(3):      doi: 10.1177/03635465980260022701
               716-721.
               doi: doi:10.1073/pnas.1518238113                211. Coutts RD, Healey RM, Ostrander R,  et al. Matrices for
                                                                  cartilage repair. Clin Orthop Relat Res. 2001;391:S271-279.
            200. Zhao D, Huang S, Lu F, et al. Vascularized bone grafting fixed      doi: 10.1097/00003086-200110001-00025
               by biodegradable magnesium screw for treating osteonecrosis
               of the femoral head. Biomaterials. 2016;81:84-92.  212. Zhang Y, Pizzute T, Pei M. Anti-inflammatory strategies
               doi: 10.1016/j.biomaterials.2015.11.038            in cartilage repair.  Tissue Eng Part B Rev. 2014;20(6):
                                                                  655-668.
            201. Zhao D, Witte F, Lu F,  et al. Current status on clinical      doi: 10.1089/ten.TEB.2014.0014
               applications of magnesium-based orthopaedic implants: a
               review from clinical translational perspective. Biomaterials.   213. Xu HH, Wang P, Wang L, et al. Calcium phosphate cements
               2017;112:287-302.                                  for bone engineering and their biological properties. Bone
               doi: 10.1016/j.biomaterials.2016.10.017            Res. 2017;5:17056.
                                                                  doi: 10.1038/boneres.2017.56
            202. Mou H, Qu H, Li B, et al. Can “domino” therapy effectively
               treat the infection around the prosth esis after the limb   214. Gelli  R,  Ridi  F.  An  overview  of  magnesium-phosphate-
               salvage surgery of bone tumor? - A study of sequential   based cements as bone repair materials. J Funct Biomater.
               therapy. Int J Surg. 2022;101:106630.              2023;14(8).
               doi: 10.1016/j.ijsu.2022.106630                    doi: 10.3390/jfb14080424
            203. Hill D, Williamson T, Lai CY,  et al. Automated elaborate   215. Wong HM, Wu S, Chu PK,  et al. Low-modulus Mg/PCL
               resection  planning  for  bone  tumor  surgery.  Int J Comput   hybrid bone substitute for osteoporotic fracture fixation.
               Assist Radiol Surg. 2023;18(3):553-564.            Biomaterials. 2013;34(29):7016-7032.
               doi: 10.1007/s11548-022-02763-4                    doi: 10.1016/j.biomaterials.2013.05.062
            204. Park JW, Kang HG, Lim KM, et al. Bone tumor resection   216. Zhang X, Mao J, Zhou Y, Ji F, Chen X. Mechanical properties
               guide using three-dimensional printing for limb salvage   and osteoblast proliferation of complex porous dental
               surgery. J Surg Oncol. 2018;118(6):898-905.        implants filled with magnesium alloy based on 3D printing.
               doi: 10.1002/jso.25236                             J Biomater Appl. 2021;35(10):1275-1283.
                                                                  doi: 10.1177/0885328220957902
            205. Amukarimi S, Mozafari M. Biodegradable magnesium-based
               biomaterials: an overview of challenges and opportunities.   217. Salah M, Tayebi L, Moharamzadeh K, Naini FB.  Three-
               MedComm. 2020;2(2):123-144.                        dimensional bio-printing and bone tissue engineering:
               doi: 10.1002/mco2.59                               technical innovations and potential applications in
                                                                  maxillofacial reconstructive surgery.  Maxillofac  Plast
            206. Zhang X, Li X-W, Li J-G, Sun X-D. Preparation and
               mechanical property of a novel 3D porous magnesium   Reconstr Surg. 2020;42(1):18.
               scaffold for bone tissue engineering.  Mater Sci Eng C.      doi: 10.1186/s40902-020-00263-6
               2014;42:362-367.                                218. Zafar S, Siddiqi A. Biological responses to pediatric stainless
               doi: 10.1016/j.msec.2014.05.044                    steel crowns. J Oral Sci. 2020;62(3):245-249.
                                                                  doi: 10.2334/josnusd.20-0083
            207. Disegi JA, Eschbach L. Stainless steel in bone surgery. Injury.
               2000;31(Suppl 4):2-6.                           219. Leal SC, Takeshita EM. Pediatric restorative dentistry.
               doi: 10.1016/s0020-1383(00)80015-7                 Pediatr Dent. 2017;39(6):312-324.









            Volume 10 Issue 3 (2024)                        60                                doi: 10.36922/ijb.2460
   63   64   65   66   67   68   69   70   71   72   73