Page 87 - IJB-10-3
P. 87
International Journal of Bioprinting 3D printing technology in neurotrauma
doi: 10.1016/j.compositesb.2016.11.034 46. Nazemi MM, Khodabandeh A, Hadjizadeh A. Near-
field electrospinning: crucial parameters, challenges, and
34. Joung D, Lavoie NS, Guo SZ, Park SH, Parr AM, McAlpine
MC. 3D printed neural regeneration devices. Adv Funct applications. ACS Appl Biomater. 2022;5(2):394-412.
Mater. 2020;30(1). doi: 10.1021/acsabm.1c00944
doi: 10.1002/adfm.201906237 47. Sun D, Chang C, Li S, Lin L. Near-field electrospinning.
Nano Lett. 2006;6(4):839-842.
35. Haring AP, Sontheimer H, Johnson BN. Microphysiological
human brain and neural systems-on-a-chip: potential doi: 10.1021/nl0602701
alternatives to small animal models and emerging platforms 48. He FL, Li DW, He J, et al. A novel layer-structured scaffold
for drug discovery and personalized medicine. Stem Cell Rev with large pore sizes suitable for 3D cell culture prepared by
Rep. 2017;13(3):381-406. near-field electrospinning. Mater Sci Eng C Mater Biol Appl.
doi: 10.1007/s12015-017-9738-0 2018;86:18-27.
doi: 10.1016/j.msec.2017.12.016
36. Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin
CT. Progress in 3D bioprinting technology for tissue/organ 49. Chang C, Limkrailassiri K, Lin L. Continuous near-
regenerative engineering. Biomaterials. 2020;226:119536. field electrospinning for large area deposition of orderly
doi: 10.1016/j.biomaterials.2019.119536 nanofiber patterns. Appl Phys Lett. 2008;93(12):123111.
doi: 10.1063/1.2975834
37. Li Y, Cheng S, Wen H, et al. Coaxial 3D printing of hierarchical
structured hydrogel scaffolds for on-demand repair of spinal 50. Zhao X, Lu X, Li K, et al. Double crosslinked biomimetic
cord injury. Acta Biomater. 2023;168:400-415. composite hydrogels containing topographical cues and
doi: 10.1016/j.actbio.2023.07.020 WAY-316606 induce neural tissue regeneration and
functional recovery after spinal cord injury. Bioact Mater.
38. Joung D, Truong V, Neitzke CC, et al. 3D printed stem-cell
derived neural progenitors generate spinal cord scaffolds. 2023;24:331-345.
Adv Funct Mater. 2018;28(39). doi: 10.1016/j.bioactmat.2022.12.024
doi: 10.1002/adfm.201801850 51. Song S, Zhou J, Wan J, et al. Three-dimensional printing of
microfiberreinforced hydrogel loaded with oxymatrine for
39. Johnson BN, Lancaster KZ, Zhen G, et al. 3D printed
anatomical nerve regeneration pathways. Adv Funct Mater. treating spinal cord injury. Int J Bioprint. 2023;9(3).
2015;25(39):6205-6217. doi: 10.18063/ijb.692
doi: 10.1002/adfm.201501760 52. Maruo S, Nakamura O, Kawata S. Three-
dimensional microfabrication with two-photon-
40. Oliveira EP, Malysz-Cymborska I, Golubczyk D, et al.
Advances in bioinks and in vivo imaging of biomaterials for absorbed photopolymerization. Opt Lett. 1997;22(2):132-134.
CNS applications. Acta Biomater. 2019;95:60-72. doi: 10.1364/ol.22.000132
doi: 10.1016/j.actbio.2019.05.006 53. Kawata S, Sun HB, Tanaka T, Takada K. Finer features for
functional microdevices. Nature. 2001;412(6848):697-698.
41. O’Brien CM, Holmes B, Faucett S, Zhang LG. Three-
dimensional printing of nanomaterial scaffolds for complex doi: 10.1038/35089130
tissue regeneration. Tissue Eng Part B Rev. 2015;21(1):103-114. 54. Lee K-S, Kim RH, Yang D-Y, Park SH. Advances in 3D nano/
doi: 10.1089/ten.TEB.2014.0168 microfabrication using two-photon initiated polymerization.
Prog Polym Sci. 2008;33(6):631-681.
42. Hsiao D, Hsu SH, Chen RS, Chen MH. Characterization of
designed directional polylactic acid 3D scaffolds for neural doi: 10.1016/j.progpolymsci.2008.01.001
differentiation of human dental pulp stem cells. J Formos 55. Liska R, Schuster M, Inführ R, et al. Photopolymers for rapid
Med Assoc. 2020;119(1 Pt 2):268-275. prototyping. J Coat Technol Res. 2007;4(4):505-510.
doi: 10.1016/j.jfma.2019.05.011 doi: 10.1007/s11998-007-9059-3
43. Wang J, Zhang Y, Aghda NH, et al. Emerging 3D printing 56. Xing J-F, Dong X-Z, Chen W-Q, et al. Improving spatial
technologies for drug delivery devices: current status and resolution of two-photon microfabrication by using
future perspective. Adv Drug Deliv Rev. 2021;174:294-316. photoinitiator with high initiating efficiency. Appl Phys Lett.
doi: 10.1016/j.addr.2021.04.019 2007;90(13):131106.
doi: 10.1063/1.2717532
44. Wu GH, Hsu SH. Review: polymeric-based 3D printing for
tissue engineering. J Med Biol Eng. 2015;35(3):285-292. 57. Accardo A, Blatché M-C, Courson R, Loubinoux I, Vieu C,
doi: 10.1007/s40846-015-0038-3 Malaquin L. Two-photon lithography and microscopy of 3D
hydrogel scaffolds for neuronal cell growth. Biomed Phys
45. Chen MY, Skewes J, Woodruff MA, Dasgupta P, Rukin NJ.
Multi-colour extrusion fused deposition modelling: a low- Eng Express. 2018;4(2):027009.
cost 3D printing method for anatomical prostate cancer doi: 10.1088/2057-1976/aaab93
models. Sci Rep. 2020;10(1):10004. 58. Marino A, Ciofani G, Filippeschi C, et al. Two-photon
doi: 10.1038/s41598-020-67082-7 polymerization of sub-micrometric patterned surfaces:
Volume 10 Issue 3 (2024) 79 doi: 10.36922/ijb.2311

