Page 87 - IJB-10-3
        P. 87
     International Journal of Bioprinting                                  3D printing technology in neurotrauma
               doi: 10.1016/j.compositesb.2016.11.034          46.  Nazemi MM, Khodabandeh A, Hadjizadeh A. Near-
                                                                  field electrospinning: crucial parameters, challenges, and
            34.  Joung D, Lavoie NS, Guo SZ, Park SH, Parr AM, McAlpine
               MC. 3D printed neural regeneration devices.  Adv Funct   applications. ACS Appl Biomater. 2022;5(2):394-412.
               Mater. 2020;30(1).                                 doi: 10.1021/acsabm.1c00944
               doi: 10.1002/adfm.201906237                     47.  Sun D, Chang C, Li S, Lin L. Near-field electrospinning.
                                                                  Nano Lett. 2006;6(4):839-842.
            35.  Haring AP, Sontheimer H, Johnson BN. Microphysiological
               human brain and neural systems-on-a-chip: potential      doi: 10.1021/nl0602701
               alternatives to small animal models and emerging platforms   48.  He FL, Li DW, He J, et al. A novel layer-structured scaffold
               for drug discovery and personalized medicine. Stem Cell Rev   with large pore sizes suitable for 3D cell culture prepared by
               Rep. 2017;13(3):381-406.                           near-field electrospinning. Mater Sci Eng C Mater Biol Appl.
               doi: 10.1007/s12015-017-9738-0                     2018;86:18-27.
                                                                  doi: 10.1016/j.msec.2017.12.016
            36.  Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin
               CT. Progress in 3D bioprinting technology for tissue/organ   49.  Chang C, Limkrailassiri K, Lin L. Continuous near-
               regenerative engineering. Biomaterials. 2020;226:119536.   field electrospinning for large area deposition of orderly
               doi: 10.1016/j.biomaterials.2019.119536            nanofiber patterns. Appl Phys Lett. 2008;93(12):123111.
                                                                  doi: 10.1063/1.2975834
            37.  Li Y, Cheng S, Wen H, et al. Coaxial 3D printing of hierarchical
               structured hydrogel scaffolds for on-demand repair of spinal   50.  Zhao X, Lu X, Li K, et al. Double crosslinked biomimetic
               cord injury. Acta Biomater. 2023;168:400-415.      composite hydrogels containing topographical cues and
               doi: 10.1016/j.actbio.2023.07.020                  WAY-316606 induce neural tissue regeneration and
                                                                  functional recovery after spinal cord injury. Bioact Mater.
            38.  Joung D, Truong V, Neitzke CC, et al. 3D printed stem-cell
               derived neural progenitors generate spinal cord scaffolds.   2023;24:331-345.
               Adv Funct Mater. 2018;28(39).                      doi: 10.1016/j.bioactmat.2022.12.024
               doi: 10.1002/adfm.201801850                     51.  Song S, Zhou J, Wan J, et al. Three-dimensional printing of
                                                                  microfiberreinforced hydrogel loaded with oxymatrine for
            39.  Johnson  BN,  Lancaster  KZ,  Zhen  G,  et  al.  3D  printed
               anatomical nerve regeneration pathways. Adv Funct Mater.   treating spinal cord injury. Int J Bioprint. 2023;9(3).
               2015;25(39):6205-6217.                             doi: 10.18063/ijb.692
               doi: 10.1002/adfm.201501760                     52.  Maruo  S,  Nakamura  O,  Kawata  S.  Three-
                                                                  dimensional  microfabrication  with  two-photon-
            40.  Oliveira  EP, Malysz-Cymborska I, Golubczyk D, et al.
               Advances in bioinks and in vivo imaging of biomaterials for   absorbed photopolymerization. Opt Lett. 1997;22(2):132-134.
               CNS applications. Acta Biomater. 2019;95:60-72.      doi: 10.1364/ol.22.000132
               doi: 10.1016/j.actbio.2019.05.006               53.  Kawata S, Sun HB, Tanaka T, Takada K. Finer features for
                                                                  functional microdevices. Nature. 2001;412(6848):697-698.
            41.  O’Brien CM, Holmes B, Faucett S, Zhang LG. Three-
               dimensional printing of nanomaterial scaffolds for complex      doi: 10.1038/35089130
               tissue regeneration. Tissue Eng Part B Rev. 2015;21(1):103-114.   54.  Lee K-S, Kim RH, Yang D-Y, Park SH. Advances in 3D nano/
               doi: 10.1089/ten.TEB.2014.0168                     microfabrication using two-photon initiated polymerization.
                                                                  Prog Polym Sci. 2008;33(6):631-681.
            42.  Hsiao D, Hsu SH, Chen RS, Chen MH. Characterization of
               designed directional polylactic acid 3D scaffolds for neural      doi: 10.1016/j.progpolymsci.2008.01.001
               differentiation of human dental pulp stem cells.  J Formos   55.  Liska R, Schuster M, Inführ R, et al. Photopolymers for rapid
               Med Assoc. 2020;119(1 Pt 2):268-275.               prototyping. J Coat Technol Res. 2007;4(4):505-510.
               doi: 10.1016/j.jfma.2019.05.011                    doi: 10.1007/s11998-007-9059-3
            43.  Wang J, Zhang Y, Aghda NH, et al. Emerging 3D printing   56.  Xing  J-F, Dong  X-Z, Chen  W-Q, et  al. Improving spatial
               technologies for drug delivery devices: current status and   resolution of two-photon microfabrication by using
               future perspective. Adv Drug Deliv Rev. 2021;174:294-316.   photoinitiator with high initiating efficiency. Appl Phys Lett.
               doi: 10.1016/j.addr.2021.04.019                    2007;90(13):131106.
                                                                  doi: 10.1063/1.2717532
            44.  Wu GH, Hsu SH. Review: polymeric-based 3D printing for
               tissue engineering. J Med Biol Eng. 2015;35(3):285-292.   57.  Accardo A, Blatché M-C, Courson R, Loubinoux I, Vieu C,
               doi: 10.1007/s40846-015-0038-3                     Malaquin L. Two-photon lithography and microscopy of 3D
                                                                  hydrogel scaffolds for neuronal cell growth.  Biomed Phys
            45.  Chen MY, Skewes J, Woodruff MA, Dasgupta P, Rukin NJ.
               Multi-colour extrusion fused deposition modelling: a low-  Eng Express. 2018;4(2):027009.
               cost 3D printing method for anatomical prostate cancer      doi: 10.1088/2057-1976/aaab93
               models. Sci Rep. 2020;10(1):10004.              58.  Marino A, Ciofani G, Filippeschi C, et al. Two-photon
               doi: 10.1038/s41598-020-67082-7                    polymerization of sub-micrometric patterned surfaces:
            Volume 10 Issue 3 (2024)                        79                                doi: 10.36922/ijb.2311





