Page 89 - IJB-10-3
        P. 89
     International Journal of Bioprinting                                  3D printing technology in neurotrauma
            82.  Raspa A, Pugliese R, Maleki M, Gelain F. Recent therapeutic      doi: 10.1016/j.mtbio.2023.100652
               approaches for spinal cord injury.  Biotechnol Bioeng.   94.  Zhang X, Wu W, Huang Y, Yang X, Gou M. Antheraea pernyi
               2016;113(2):253-259.                               silk fibroin bioinks for digital light processing 3D printing.
               doi: 10.1002/bit.25689
                                                                  Int J Bioprint. 2023;9(5):760.
            83.  Slotkin JR, Pritchard CD, Luque B, et al. Biodegradable      doi: 10.18063/ijb.760
               scaffolds promote tissue remodeling and functional   95.  Stenberg L, Kodama A, Lindwall-Blom C, Dahlin LB. Nerve
               improvement in non-human primates with acute spinal   regeneration in chitosan conduits and in autologous nerve
               cord injury. Biomaterials. 2017;123:63-76.         grafts in healthy and in type 2 diabetic Goto-Kakizaki rats.
               doi: 10.1016/j.biomaterials.2017.01.024
                                                                  Eur J Neurosci. 2016;43(3):463-473.
            84.  Li J, Wu C, Chu PK, Gelinsky M. 3D printing of hydrogels:      doi: 10.1111/ejn.13068
               rational design strategies and emerging biomedical   96.  Neubrech F, Sauerbier M, Moll W, et al. Enhancing the
               applications. Mater Sci Eng R Rep. 2020;140:100543.   outcome  of  traumatic  sensory  nerve  lesions  of  the  hand
               doi: 10.1016/j.mser.2020.100543
                                                                  by  additional  use  of  a  chitosan  nerve  tube  in  primary
            85.  Kuo KC, Lin RZ, Tien HW, et al. Bioengineering vascularized   nerve repair: a randomized controlled bicentric trial. Plast
               tissue constructs using an injectable cell-laden enzymatically   Reconstr Surg. Aug 2018;142(2):415-424.
               crosslinked collagen hydrogel derived from dermal      doi: 10.1097/prs.0000000000004574
               extracellular matrix. Acta Biomater. 2015;27:151-166.   97.  Zhao Y, Wang Y, Gong J, et al. Chitosan degradation products
               doi: 10.1016/j.actbio.2015.09.002
                                                                  facilitate peripheral nerve regeneration by improving
            86.  Chen C, Zhao ML, Zhang RK, et al. Collagen/heparin sulfate   macrophage-constructed microenvironments. Biomaterials.
               scaffolds fabricated by a 3D bioprinter improved mechanical   2017;134:64-77.
               properties and neurological function after spinal cord injury      doi: 10.1016/j.biomaterials.2017.02.026
               in rats. J Biomed Mater Res Part A. 2017;105(5):1324-1332.   98.  Sun Y, Yang C, Zhu X, et al. 3D printing collagen/chitosan
               doi: 10.1002/jbm.a.36011
                                                                  scaffold ameliorated axon regeneration and neurological
            87.  Jiang J, Liu X, Chen H, et al. 3D printing collagen/heparin   recovery after spinal cord injury. J Biomed Mater Res Part A.
               sulfate scaffolds  boost neural  network  reconstruction  and   2019;107(9):1898-1908.
               motor function recovery after traumatic brain injury in      doi: 10.1002/jbm.a.36675
               canine. Biomater Sci. 2020;8(22):6362-6374.     99.  Lindberg D, Kristoffersen KA, Wubshet SG, et al. Exploring
               doi: 10.1039/d0bm01116a
                                                                  effects of protease choice and protease combinations in
            88.  Wang Y, Zhang L, Guo K, Wang H. 3D printing of collagen   enzymatic protein hydrolysis of poultry by-products.
               nerve scaffold with multichannel characteristics. J Phys Conf   Molecules (Basel, Switzerland). 2021;26(17).
               Ser. 2023;2557(1):012058.                          doi: 10.3390/molecules26175280
               doi: 10.1088/1742-6596/2557/1/012058
                                                               100. Duan B, Hockaday LA, Kang KH, Butcher JT. 3D bioprinting
            89.  Rockwood DN, Preda RC,  Yücel T,  Wang X,  Lovett ML,   of heterogeneous aortic valve conduits with alginate/gelatin
               Kaplan DL. Materials fabrication from Bombyx mori silk   hydrogels. J Biomed Mater Res Part A. 2013;101(5):1255-1264.
               fibroin. Nat Protoc. 2011;6(10):1612-1631.         doi: 10.1002/jbm.a.34420
               doi: 10.1038/nprot.2011.379
                                                               101. Tran KA, DeOre BJ, Ikejiani D, et al. Matching mechanical
            90.  Qian KY, Song Y, Yan X, et al. Injectable ferrimagnetic silk   heterogeneity  of  the  native  spinal  cord  augments  axon
               fibroin hydrogel for magnetic hyperthermia ablation of deep   infiltration  in  3D-printed  scaffolds.  Biomaterials.
               tumor. Biomaterials. 2020;259:120299.              2023;295:122061.
               doi: 10.1016/j.biomaterials.2020.120299            doi: 10.1016/j.biomaterials.2023.122061
            91.  Li XH, Zhu X, Liu XY, et al. The corticospinal tract structure   102. Murphy SV, Atala A. 3D bioprinting of tissues and organs.
               of collagen/silk fibroin scaffold implants using 3D printing   Nat Biotechnol. 2014;32(8):773-785.
               promotes functional recovery after complete spinal cord      doi: 10.1038/nbt.2958
               transection in rats. J Mater Sci Mater Med. 2021;32(4):31.   103. Bae M, Hwang DW, Ko MK, et al. Neural stem cell delivery
               doi: 10.1007/s10856-021-06500-2
                                                                  using brain-derived tissue-specific bioink for recovering
            92.  Kim SH, Yeon YK, Lee JM, et al. Precisely printable and   from traumatic brain injury. Biofabrication. 2021;13(4).
               biocompatible silk fibroin bioink for digital light processing      doi: 10.1088/1758-5090/ac293f
               3D printing. Nat Commun. 2018;9(1):1620.        104. Kong  JS,  Huang  X,  Choi  YJ,  et  al.  Promoting  long-term
               doi: 10.1038/s41467-018-03759-y
                                                                  cultivation of motor neurons for 3D neuromuscular junction
            93.  Wu W, Dong Y, Liu H, et al. 3D printed elastic hydrogel   formation of 3D in vitro using central-nervous-tissue-
               conduits with 7,8-dihydroxyflavone release for peripheral   derived bioink. Adv Healthc Mater. 2021;10(18):e2100581.
               nerve repair. Mater Today Bio. 2023;20:100652.      doi: 10.1002/adhm.202100581
            Volume 10 Issue 3 (2024)                        81                                doi: 10.36922/ijb.2311





