Page 89 - IJB-10-3
P. 89
International Journal of Bioprinting 3D printing technology in neurotrauma
82. Raspa A, Pugliese R, Maleki M, Gelain F. Recent therapeutic doi: 10.1016/j.mtbio.2023.100652
approaches for spinal cord injury. Biotechnol Bioeng. 94. Zhang X, Wu W, Huang Y, Yang X, Gou M. Antheraea pernyi
2016;113(2):253-259. silk fibroin bioinks for digital light processing 3D printing.
doi: 10.1002/bit.25689
Int J Bioprint. 2023;9(5):760.
83. Slotkin JR, Pritchard CD, Luque B, et al. Biodegradable doi: 10.18063/ijb.760
scaffolds promote tissue remodeling and functional 95. Stenberg L, Kodama A, Lindwall-Blom C, Dahlin LB. Nerve
improvement in non-human primates with acute spinal regeneration in chitosan conduits and in autologous nerve
cord injury. Biomaterials. 2017;123:63-76. grafts in healthy and in type 2 diabetic Goto-Kakizaki rats.
doi: 10.1016/j.biomaterials.2017.01.024
Eur J Neurosci. 2016;43(3):463-473.
84. Li J, Wu C, Chu PK, Gelinsky M. 3D printing of hydrogels: doi: 10.1111/ejn.13068
rational design strategies and emerging biomedical 96. Neubrech F, Sauerbier M, Moll W, et al. Enhancing the
applications. Mater Sci Eng R Rep. 2020;140:100543. outcome of traumatic sensory nerve lesions of the hand
doi: 10.1016/j.mser.2020.100543
by additional use of a chitosan nerve tube in primary
85. Kuo KC, Lin RZ, Tien HW, et al. Bioengineering vascularized nerve repair: a randomized controlled bicentric trial. Plast
tissue constructs using an injectable cell-laden enzymatically Reconstr Surg. Aug 2018;142(2):415-424.
crosslinked collagen hydrogel derived from dermal doi: 10.1097/prs.0000000000004574
extracellular matrix. Acta Biomater. 2015;27:151-166. 97. Zhao Y, Wang Y, Gong J, et al. Chitosan degradation products
doi: 10.1016/j.actbio.2015.09.002
facilitate peripheral nerve regeneration by improving
86. Chen C, Zhao ML, Zhang RK, et al. Collagen/heparin sulfate macrophage-constructed microenvironments. Biomaterials.
scaffolds fabricated by a 3D bioprinter improved mechanical 2017;134:64-77.
properties and neurological function after spinal cord injury doi: 10.1016/j.biomaterials.2017.02.026
in rats. J Biomed Mater Res Part A. 2017;105(5):1324-1332. 98. Sun Y, Yang C, Zhu X, et al. 3D printing collagen/chitosan
doi: 10.1002/jbm.a.36011
scaffold ameliorated axon regeneration and neurological
87. Jiang J, Liu X, Chen H, et al. 3D printing collagen/heparin recovery after spinal cord injury. J Biomed Mater Res Part A.
sulfate scaffolds boost neural network reconstruction and 2019;107(9):1898-1908.
motor function recovery after traumatic brain injury in doi: 10.1002/jbm.a.36675
canine. Biomater Sci. 2020;8(22):6362-6374. 99. Lindberg D, Kristoffersen KA, Wubshet SG, et al. Exploring
doi: 10.1039/d0bm01116a
effects of protease choice and protease combinations in
88. Wang Y, Zhang L, Guo K, Wang H. 3D printing of collagen enzymatic protein hydrolysis of poultry by-products.
nerve scaffold with multichannel characteristics. J Phys Conf Molecules (Basel, Switzerland). 2021;26(17).
Ser. 2023;2557(1):012058. doi: 10.3390/molecules26175280
doi: 10.1088/1742-6596/2557/1/012058
100. Duan B, Hockaday LA, Kang KH, Butcher JT. 3D bioprinting
89. Rockwood DN, Preda RC, Yücel T, Wang X, Lovett ML, of heterogeneous aortic valve conduits with alginate/gelatin
Kaplan DL. Materials fabrication from Bombyx mori silk hydrogels. J Biomed Mater Res Part A. 2013;101(5):1255-1264.
fibroin. Nat Protoc. 2011;6(10):1612-1631. doi: 10.1002/jbm.a.34420
doi: 10.1038/nprot.2011.379
101. Tran KA, DeOre BJ, Ikejiani D, et al. Matching mechanical
90. Qian KY, Song Y, Yan X, et al. Injectable ferrimagnetic silk heterogeneity of the native spinal cord augments axon
fibroin hydrogel for magnetic hyperthermia ablation of deep infiltration in 3D-printed scaffolds. Biomaterials.
tumor. Biomaterials. 2020;259:120299. 2023;295:122061.
doi: 10.1016/j.biomaterials.2020.120299 doi: 10.1016/j.biomaterials.2023.122061
91. Li XH, Zhu X, Liu XY, et al. The corticospinal tract structure 102. Murphy SV, Atala A. 3D bioprinting of tissues and organs.
of collagen/silk fibroin scaffold implants using 3D printing Nat Biotechnol. 2014;32(8):773-785.
promotes functional recovery after complete spinal cord doi: 10.1038/nbt.2958
transection in rats. J Mater Sci Mater Med. 2021;32(4):31. 103. Bae M, Hwang DW, Ko MK, et al. Neural stem cell delivery
doi: 10.1007/s10856-021-06500-2
using brain-derived tissue-specific bioink for recovering
92. Kim SH, Yeon YK, Lee JM, et al. Precisely printable and from traumatic brain injury. Biofabrication. 2021;13(4).
biocompatible silk fibroin bioink for digital light processing doi: 10.1088/1758-5090/ac293f
3D printing. Nat Commun. 2018;9(1):1620. 104. Kong JS, Huang X, Choi YJ, et al. Promoting long-term
doi: 10.1038/s41467-018-03759-y
cultivation of motor neurons for 3D neuromuscular junction
93. Wu W, Dong Y, Liu H, et al. 3D printed elastic hydrogel formation of 3D in vitro using central-nervous-tissue-
conduits with 7,8-dihydroxyflavone release for peripheral derived bioink. Adv Healthc Mater. 2021;10(18):e2100581.
nerve repair. Mater Today Bio. 2023;20:100652. doi: 10.1002/adhm.202100581
Volume 10 Issue 3 (2024) 81 doi: 10.36922/ijb.2311

