Page 90 - IJB-10-3
P. 90
International Journal of Bioprinting 3D printing technology in neurotrauma
105. Gyles DA, Castro LD, Silva JOC, Ribeiro-Costa RM. A 117. Wu W, Dong Y, Liu H, et al. Modification of plasma protein
review of the designs and prominent biomedical advances for bioprinting via photopolymerization. Chin Chem Lett.
of natural and synthetic hydrogel formulations. Eur Polym J. 2023;109260.
2017;88:373-392. doi: 10.1016/j.cclet.2023.109260
doi: 10.1016/j.eurpolymj.2017.01.027
118. AlGhamdi KM, Kumar A, Moussa NA. Low-level laser
106. Assunção-Silva RC, Gomes ED, Sousa N, Silva NA, Salgado therapy: a useful technique for enhancing the proliferation
AJ. Hydrogels and cell based therapies in spinal cord injury of various cultured cells. Lasers Med Sci. 2012;27(1):
regeneration. Stem Cells Int. 2015;2015:948040. 237-249.
doi: 10.1155/2015/948040 doi: 10.1007/s10103-011-0885-2
107. Haggerty AE, Oudega M. Biomaterials for spinal cord repair. 119. Chung H, Dai T, Sharma SK, Huang YY, Carroll JD, Hamblin
Neurosci Bull. 2013;29(4):445-459. MR. The nuts and bolts of low-level laser (light) therapy.
doi: 10.1007/s12264-013-1362-7 Ann Biomed Eng. 2012;40(2):516-533.
108. Kaplan B, Merdler U, Szklanny AA, et al. Rapid prototyping doi: 10.1007/s10439-011-0454-7
fabrication of soft and oriented polyester scaffolds for axonal 120. Pjrek E, Friedrich ME, Cambioli L, et al. The efficacy of light
guidance. Biomaterials. 2020;251:120062. therapy in the treatment of seasonal affective disorder: a
doi: 10.1016/j.biomaterials.2020.120062 meta-analysis of randomized controlled trials. Psychother
109. Qian Y, Song J, Zhao X, et al. 3D fabrication with integration Psychosom. 2020;89(1):17-24.
molding of a graphene oxide/polycaprolactone nanoscaffold doi: 10.1159/000502891
for neurite regeneration and angiogenesis. Adv Sci. 121. Hashmi JT, Huang YY, Osmani BZ, Sharma SK, Naeser
2018;5(4):1700499. MA, Hamblin MR. Role of low-level laser therapy in
doi: 10.1002/advs.201700499 neurorehabilitation. PM & R. 2010;2(12 Suppl 2):S292-S305.
110. Zhang C, Zhang N, Wen X. Synthesis and characterization doi: 10.1016/j.pmrj.2010.10.013
of biocompatible, degradable, light-curable, polyurethane- 122. Zhu W, George JK, Sorger VJ, Grace Zhang L. 3D printing
based elastic hydrogels. J Biomed Mater Res Part A. scaffold coupled with low level light therapy for neural tissue
2007;82(3):637-650. regeneration. Biofabrication. 2017;9(2):025002.
doi: 10.1002/jbm.a.30992 doi: 10.1088/1758-5090/aa6999
111. Yeganegi M, Kandel RA, Santerre JP. Characterization of a 123. Sordini L, Garrudo FFF, Rodrigues CAV, et al. Effect of
biodegradable electrospun polyurethane nanofiber scaffold: electrical stimulation conditions on neural stem cells
mechanical properties and cytotoxicity. Acta Biomater. differentiation on cross-linked PEDOT:PSS films. Front
2010;6(10):3847-3855. Bioeng Biotechnol. 2021;9:591838.
doi: 10.1016/j.actbio.2010.05.003 doi: 10.3389/fbioe.2021.591838
112. Huang CT, Kumar Shrestha L, Ariga K, Hsu SH. A graphene- 124. Fu C, Pan S, Ma Y, Kong W, Qi Z, Yang X. Effect of
polyurethane composite hydrogel as a potential bioink for electrical stimulation combined with graphene-oxide-
3D bioprinting and differentiation of neural stem cells. J based membranes on neural stem cell proliferation
Mater Chem B. 2017;5(44):8854-8864. and differentiation. Artif Cells Nanomed Biotechnol.
doi: 10.1039/c7tb01594a 2019;47(1):1867-1876.
113. Hsieh FY, Lin HH, Hsu SH. 3D bioprinting of neural stem doi: 10.1080/21691401.2019.1613422
cell-laden thermoresponsive biodegradable polyurethane 125. Yang K, Yu SJ, Lee JS, et al. Electroconductive nanoscale
hydrogel and potential in central nervous system repair. topography for enhanced neuronal differentiation and
Biomaterials. 2015;71:48-57. electrophysiological maturation of human neural stem cells.
doi: 10.1016/j.biomaterials.2015.08.028 Nanoscale. 2017;9(47):18737-18752.
114. Lendlein A, Trask R. Multifunctional materials: concepts, doi: 10.1039/c7nr05446g
function- structure relationships, knowledge-based design, 126. Heo DN, Acquah N, Kim J, Lee SJ, Castro NJ, Zhang LG.
translational materials research. Multifunct Mater. 2018;1. Directly induced neural differentiation of human adipose-
doi: 10.1088/2399-7532/aada7b derived stem cells using three-dimensional culture system of
115. Buwalda S. Bio-based composite hydrogels for biomedical conductive microwell with electrical stimulation. Tissue Eng
applications. Multifunct Mater. 2020;3. Part A. 2018;24(7-8):537-545.
doi: 10.1088/2399-7532/ab80d6 doi: 10.1089/ten.TEA.2017.0150
116. Wei Z, Harris BT, Zhang LG. Gelatin methacrylamide 127. Rahmani A, Nadri S, Kazemi HS, Mortazavi Y, Sojoodi M.
hydrogel with graphene nanoplatelets for neural cell-laden Conductive electrospun scaffolds with electrical stimulation
3D bioprinting. Annu Int Conf IEEE Eng Med Biol Soc. for neural differentiation of conjunctiva mesenchymal stem
2016;2016:4185-4188. cells. Artif Organs. 2019;43(8):780-790.
doi: 10.1109/embc.2016.7591649 doi: 10.1111/aor.13425
Volume 10 Issue 3 (2024) 82 doi: 10.36922/ijb.2311

