Page 90 - IJB-10-3
        P. 90
     International Journal of Bioprinting                                  3D printing technology in neurotrauma
            105. Gyles DA, Castro LD, Silva JOC, Ribeiro-Costa RM. A   117. Wu W, Dong Y, Liu H, et al. Modification of plasma protein
               review of the designs and prominent biomedical advances   for bioprinting via photopolymerization. Chin Chem Lett.
               of natural and synthetic hydrogel formulations. Eur Polym J.   2023;109260.
               2017;88:373-392.                                   doi: 10.1016/j.cclet.2023.109260
               doi: 10.1016/j.eurpolymj.2017.01.027
                                                               118. AlGhamdi KM, Kumar A, Moussa NA. Low-level laser
            106. Assunção-Silva RC, Gomes ED, Sousa N, Silva NA, Salgado   therapy: a useful technique for enhancing the proliferation
               AJ. Hydrogels and cell based therapies in spinal cord injury   of various cultured cells.  Lasers Med Sci. 2012;27(1):
               regeneration. Stem Cells Int. 2015;2015:948040.    237-249.
               doi: 10.1155/2015/948040                           doi: 10.1007/s10103-011-0885-2
            107. Haggerty AE, Oudega M. Biomaterials for spinal cord repair.   119. Chung H, Dai T, Sharma SK, Huang YY, Carroll JD, Hamblin
               Neurosci Bull. 2013;29(4):445-459.                 MR. The nuts and bolts of low-level laser (light) therapy.
               doi: 10.1007/s12264-013-1362-7                     Ann Biomed Eng. 2012;40(2):516-533.
            108. Kaplan B, Merdler U, Szklanny AA, et al. Rapid prototyping      doi: 10.1007/s10439-011-0454-7
               fabrication of soft and oriented polyester scaffolds for axonal   120. Pjrek E, Friedrich ME, Cambioli L, et al. The efficacy of light
               guidance. Biomaterials. 2020;251:120062.           therapy in the treatment of seasonal affective disorder: a
               doi: 10.1016/j.biomaterials.2020.120062            meta-analysis of randomized controlled trials.  Psychother
            109. Qian Y, Song J, Zhao X, et al. 3D fabrication with integration   Psychosom. 2020;89(1):17-24.
               molding of a graphene oxide/polycaprolactone nanoscaffold      doi: 10.1159/000502891
               for  neurite  regeneration  and  angiogenesis.  Adv Sci.   121. Hashmi JT, Huang YY, Osmani BZ, Sharma SK, Naeser
               2018;5(4):1700499.                                 MA, Hamblin MR. Role of low-level laser therapy in
               doi: 10.1002/advs.201700499                        neurorehabilitation. PM & R. 2010;2(12 Suppl 2):S292-S305.
            110. Zhang C, Zhang N, Wen X. Synthesis and characterization      doi: 10.1016/j.pmrj.2010.10.013
               of biocompatible, degradable, light-curable, polyurethane-  122. Zhu W, George JK, Sorger VJ, Grace Zhang L. 3D printing
               based elastic hydrogels.  J Biomed Mater Res Part A.   scaffold coupled with low level light therapy for neural tissue
               2007;82(3):637-650.                                regeneration. Biofabrication. 2017;9(2):025002.
               doi: 10.1002/jbm.a.30992                           doi: 10.1088/1758-5090/aa6999
            111. Yeganegi M, Kandel RA, Santerre JP. Characterization of a   123. Sordini L, Garrudo FFF, Rodrigues CAV, et al. Effect of
               biodegradable electrospun polyurethane nanofiber scaffold:   electrical stimulation conditions on neural stem cells
               mechanical properties and cytotoxicity.  Acta Biomater.   differentiation on cross-linked PEDOT:PSS films.  Front
               2010;6(10):3847-3855.                              Bioeng Biotechnol. 2021;9:591838.
               doi: 10.1016/j.actbio.2010.05.003                  doi: 10.3389/fbioe.2021.591838
            112. Huang CT, Kumar Shrestha L, Ariga K, Hsu SH. A graphene-  124. Fu C, Pan S, Ma Y, Kong W, Qi Z, Yang X. Effect of
               polyurethane composite hydrogel as a potential bioink for   electrical stimulation combined with graphene-oxide-
               3D bioprinting and differentiation of neural stem cells.  J   based membranes on neural stem cell proliferation
               Mater Chem B. 2017;5(44):8854-8864.                and differentiation.  Artif Cells Nanomed Biotechnol.
               doi: 10.1039/c7tb01594a                            2019;47(1):1867-1876.
            113. Hsieh FY, Lin HH, Hsu SH. 3D bioprinting of neural stem      doi: 10.1080/21691401.2019.1613422
               cell-laden thermoresponsive biodegradable polyurethane   125. Yang  K,  Yu  SJ,  Lee  JS,  et  al.  Electroconductive  nanoscale
               hydrogel and potential in central nervous system repair.   topography for enhanced neuronal differentiation and
               Biomaterials. 2015;71:48-57.                       electrophysiological maturation of human neural stem cells.
               doi: 10.1016/j.biomaterials.2015.08.028            Nanoscale. 2017;9(47):18737-18752.
            114. Lendlein A, Trask R. Multifunctional materials: concepts,      doi: 10.1039/c7nr05446g
               function- structure relationships, knowledge-based design,   126. Heo DN, Acquah N, Kim J, Lee SJ, Castro NJ, Zhang LG.
               translational materials research. Multifunct Mater. 2018;1.   Directly induced neural differentiation of human adipose-
               doi: 10.1088/2399-7532/aada7b                      derived stem cells using three-dimensional culture system of
            115. Buwalda S. Bio-based composite hydrogels for biomedical   conductive microwell with electrical stimulation. Tissue Eng
               applications. Multifunct Mater. 2020;3.            Part A. 2018;24(7-8):537-545.
               doi: 10.1088/2399-7532/ab80d6                      doi: 10.1089/ten.TEA.2017.0150
            116. Wei Z, Harris BT, Zhang LG. Gelatin methacrylamide   127. Rahmani A, Nadri S, Kazemi HS, Mortazavi Y, Sojoodi M.
               hydrogel with graphene nanoplatelets for neural cell-laden   Conductive electrospun scaffolds with electrical stimulation
               3D bioprinting.  Annu Int Conf IEEE Eng Med Biol Soc.   for neural differentiation of conjunctiva mesenchymal stem
               2016;2016:4185-4188.                               cells. Artif Organs. 2019;43(8):780-790.
               doi: 10.1109/embc.2016.7591649                     doi: 10.1111/aor.13425
            Volume 10 Issue 3 (2024)                        82                                doi: 10.36922/ijb.2311





