Page 92 - IJB-10-3
P. 92
International Journal of Bioprinting 3D printing technology in neurotrauma
150. Lee YB, Polio S, Lee W, et al. Bio-printing of collagen and 161. Giraldo E, Nebot VJ, Đorđević S, et al. A rationally designed
VEGF-releasing fibrin gel scaffolds for neural stem cell self-immolative linker enhances the synergism between a
culture. Exp Neurol. 2010;223(2):645-652. polymer-rock inhibitor conjugate and neural progenitor
doi: 10.1016/j.expneurol.2010.02.014 cells in the treatment of spinal cord injury. Biomaterials.
2021;276:121052.
151. Tao J, Liu H, Wu W, et al. 3D-printed nerve conduits with
live platelets for effective peripheral nerve repair. Adv Funct doi: 10.1016/j.biomaterials.2021.121052
Mater. 2020;30(42):2004272. 162. Mothe AJ, Tam RY, Zahir T, Tator CH, Shoichet MS. Repair
doi: 10.1002/adfm.202004272 of the injured spinal cord by transplantation of neural
stem cells in a hyaluronan-based hydrogel. Biomaterials.
152. Kalluri R, LeBleu VS. The biology, function, and biomedical
applications of exosomes. Science. 2020;367(6478). 2013;34(15):3775-3783.
doi: 10.1126/science.aau6977 doi: 10.1016/j.biomaterials.2013.02.002
163. Koffler J, Zhu W, Qu X, et al. Biomimetic 3D-printed scaffolds
153. Wen SW, Lima LG, Lobb RJ, et al. Breast cancer-derived
exosomes reflect the cell-of-origin phenotype. Proteomics. for spinal cord injury repair. Nat Med. 2019;25(2):263-269.
2019;19(8):e1800180. doi: 10.1038/s41591-018-0296-z
doi: 10.1002/pmic.201800180 164. Liu X, Hao M, Chen Z, et al. 3D bioprinted neural tissue
constructs for spinal cord injury repair. Biomaterials.
154. Liu XY, Feng YH, Feng QB, et al. Low-temperature 3D-printed
collagen/chitosan scaffolds loaded with exosomes derived 2021;272:120771.
from neural stem cells pretreated with insulin growth factor-1 doi: 10.1016/j.biomaterials.2021.120771
enhance neural regeneration after traumatic brain injury. 165. Yang J, Yang K, Man W, et al. 3D bio-printed living nerve-
Neural Regen Res. 2023;18(9):1990-1998. like fibers refine the ecological niche for long-distance spinal
doi: 10.4103/1673-5374.366497 cord injury regeneration. Bioact Mater. 2023;25:160-175.
doi: 10.1016/j.bioactmat.2023.01.023
155. Liu X, Wang J, Wang P, et al. Hypoxia-pretreated
mesenchymal stem cell-derived exosomes-loaded low- 166. Li Y, Lv S, Yuan H, et al. Peripheral nerve regeneration
temperature extrusion 3D-printed implants for neural with 3D printed bionic scaffolds loading neural crest stem
regeneration after traumatic brain injury in canines. Front cell derived schwann cell progenitors. Adv Funct Mater.
Bioeng Biotechnol. 2022;10:1025138. 2021;31(16):2010215.
doi: 10.3389/fbioe.2022.1025138 doi: 10.1002/adfm.202010215
156. Shinozaki M, Nagoshi N, Nakamura M, Okano H. 167. Cho SR, Kim YR, Kang HS, et al. Functional recovery
Mechanisms of stem cell therapy in spinal cord injuries. after the transplantation of neurally differentiated
Cells. 2021;10(10). mesenchymal stem cells derived from bone marrow in a rat
doi: 10.3390/cells10102676 model of spinal cord injury. Cell Transplant. 2009;18(12):
1359-1368.
157. Yousefifard M, Nasseri Maleki S, Askarian-Amiri S, et al.
A combination of mesenchymal stem cells and scaffolds doi: 10.3727/096368909x475329
promotes motor functional recovery in spinal cord injury: 168. Luo H, Xu C, Liu Z, et al. Neural differentiation of bone
a systematic review and meta-analysis. J Neurosurg Spine. marrow mesenchymal stem cells with human brain-derived
2019;32(2):269-284. neurotrophic factor gene-modified in functionalized
doi: 10.3171/2019.8.Spine19201 self-assembling peptide hydrogel in vitro. J Cell Biochem.
2019;120(3):2828-2835.
158. Fan L, Liu C, Chen X, et al. Directing induced pluripotent
stem cell derived neural stem cell fate with a three- doi: 10.1002/jcb.26408
dimensional biomimetic hydrogel for spinal cord injury 169. GBD 2016 Traumatic Brain Injury and Spinal Cord Injury
repair. ACS Appl Mater Interfaces. 2018;10(21):17742-17755. Collaborators. Global, regional, and national burden of
doi: 10.1021/acsami.8b05293 traumatic brain injury and spinal cord injury, 1990-2016: a
systematic analysis for the Global Burden of Disease Study
159. Pereira IM, Marote A, Salgado AJ, Silva NA. Filling the gap:
neural stem cells as a promising therapy for spinal cord 2016. Lancet Neurol. 2019;18(1):56-87.
injury. Pharmaceuticals. 2019;12(2). doi: 10.1016/s1474-4422(18)30415-0
doi: 10.3390/ph12020065 170. Ocansey DKW, Pei B, Yan Y, et al. Improved therapeutics of
modified mesenchymal stem cells: an update. J Transl Med.
160. Younsi A, Zheng G, Riemann L, et al. Long-term effects of
neural precursor cell transplantation on secondary injury 2020;18(1):42.
processes and functional recovery after severe cervical doi: 10.1186/s12967-020-02234-x
contusion-compression spinal cord injury. Int J Mol Sci. 171. Chen C, Xu HH, Liu XY, et al. 3D printed collagen/
2021;22(23). silk fibroin scaffolds carrying the secretome of human
doi: 10.3390/ijms222313106 umbilical mesenchymal stem cells ameliorated neurological
Volume 10 Issue 3 (2024) 84 doi: 10.36922/ijb.2311

