Page 92 - IJB-10-3
P. 92

International Journal of Bioprinting                                  3D printing technology in neurotrauma




            150. Lee YB, Polio S, Lee W, et al. Bio-printing of collagen and   161. Giraldo E, Nebot VJ, Đorđević S, et al. A rationally designed
               VEGF-releasing  fibrin  gel  scaffolds  for  neural  stem  cell   self-immolative linker enhances the synergism between a
               culture. Exp Neurol. 2010;223(2):645-652.          polymer-rock inhibitor conjugate and neural progenitor
               doi: 10.1016/j.expneurol.2010.02.014               cells in the treatment of spinal cord injury.  Biomaterials.
                                                                  2021;276:121052.
            151. Tao J, Liu H, Wu W, et al. 3D-printed nerve conduits with
               live platelets for effective peripheral nerve repair. Adv Funct      doi: 10.1016/j.biomaterials.2021.121052
               Mater. 2020;30(42):2004272.                     162. Mothe AJ, Tam RY, Zahir T, Tator CH, Shoichet MS. Repair
               doi: 10.1002/adfm.202004272                        of the injured spinal cord by transplantation of neural
                                                                  stem cells in a hyaluronan-based hydrogel.  Biomaterials.
            152. Kalluri R, LeBleu VS. The biology, function, and biomedical
               applications of exosomes. Science. 2020;367(6478).   2013;34(15):3775-3783.
               doi: 10.1126/science.aau6977                       doi: 10.1016/j.biomaterials.2013.02.002
                                                               163. Koffler J, Zhu W, Qu X, et al. Biomimetic 3D-printed scaffolds
            153. Wen SW, Lima LG, Lobb RJ, et al. Breast cancer-derived
               exosomes  reflect  the  cell-of-origin  phenotype.  Proteomics.   for spinal cord injury repair. Nat Med. 2019;25(2):263-269.
               2019;19(8):e1800180.                               doi: 10.1038/s41591-018-0296-z
               doi: 10.1002/pmic.201800180                     164. Liu X, Hao M, Chen Z, et al. 3D bioprinted neural tissue
                                                                  constructs  for  spinal  cord injury  repair.  Biomaterials.
            154. Liu XY, Feng YH, Feng QB, et al. Low-temperature 3D-printed
               collagen/chitosan scaffolds loaded with exosomes derived   2021;272:120771.
               from neural stem cells pretreated with insulin growth factor-1      doi: 10.1016/j.biomaterials.2021.120771
               enhance neural regeneration after traumatic brain injury.   165. Yang J, Yang K, Man W, et al. 3D bio-printed living nerve-
               Neural Regen Res. 2023;18(9):1990-1998.            like fibers refine the ecological niche for long-distance spinal
               doi: 10.4103/1673-5374.366497                      cord injury regeneration. Bioact Mater. 2023;25:160-175.
                                                                  doi: 10.1016/j.bioactmat.2023.01.023
            155. Liu X, Wang J, Wang P, et al. Hypoxia-pretreated
               mesenchymal stem cell-derived exosomes-loaded low-  166. Li Y, Lv S, Yuan H, et al. Peripheral nerve regeneration
               temperature extrusion 3D-printed implants for neural   with 3D printed bionic scaffolds loading neural crest stem
               regeneration after traumatic brain injury in canines. Front   cell derived schwann cell progenitors.  Adv Funct Mater.
               Bioeng Biotechnol. 2022;10:1025138.                2021;31(16):2010215.
               doi: 10.3389/fbioe.2022.1025138                    doi: 10.1002/adfm.202010215
            156. Shinozaki M, Nagoshi N, Nakamura M, Okano H.   167. Cho SR, Kim YR, Kang HS, et al. Functional recovery
               Mechanisms of stem cell therapy in spinal cord injuries.   after the transplantation of neurally differentiated
               Cells. 2021;10(10).                                mesenchymal stem cells derived from bone marrow in a rat
               doi: 10.3390/cells10102676                         model of spinal cord injury.  Cell Transplant. 2009;18(12):
                                                                  1359-1368.
            157. Yousefifard M, Nasseri Maleki S, Askarian-Amiri S, et al.
               A combination of mesenchymal stem cells and scaffolds      doi: 10.3727/096368909x475329
               promotes motor functional recovery in spinal cord injury:   168. Luo H, Xu C, Liu Z, et al. Neural differentiation of bone
               a  systematic  review  and  meta-analysis.  J Neurosurg Spine.   marrow mesenchymal stem cells with human brain-derived
               2019;32(2):269-284.                                neurotrophic factor gene-modified in functionalized
               doi: 10.3171/2019.8.Spine19201                     self-assembling peptide hydrogel in vitro.  J Cell Biochem.
                                                                  2019;120(3):2828-2835.
            158. Fan L, Liu C, Chen X, et al. Directing induced pluripotent
               stem cell derived neural stem cell fate with a three-     doi: 10.1002/jcb.26408
               dimensional biomimetic hydrogel for spinal cord injury   169. GBD 2016 Traumatic Brain Injury and Spinal Cord Injury
               repair. ACS Appl Mater Interfaces. 2018;10(21):17742-17755.   Collaborators. Global, regional, and national burden of
               doi: 10.1021/acsami.8b05293                        traumatic brain injury and spinal cord injury, 1990-2016: a
                                                                  systematic analysis for the Global Burden of Disease Study
            159. Pereira IM, Marote A, Salgado AJ, Silva NA. Filling the gap:
               neural stem cells as a promising therapy for spinal cord   2016. Lancet Neurol. 2019;18(1):56-87.
               injury. Pharmaceuticals. 2019;12(2).               doi: 10.1016/s1474-4422(18)30415-0
               doi: 10.3390/ph12020065                         170. Ocansey DKW, Pei B, Yan Y, et al. Improved therapeutics of
                                                                  modified mesenchymal stem cells: an update. J Transl Med.
            160. Younsi A, Zheng G, Riemann L, et al. Long-term effects of
               neural precursor cell transplantation on secondary injury   2020;18(1):42.
               processes and  functional recovery  after  severe  cervical      doi: 10.1186/s12967-020-02234-x
               contusion-compression  spinal  cord  injury.  Int J Mol Sci.   171. Chen C, Xu HH, Liu XY, et al. 3D printed collagen/
               2021;22(23).                                       silk fibroin scaffolds carrying the secretome of human
               doi: 10.3390/ijms222313106                         umbilical mesenchymal stem cells ameliorated neurological



            Volume 10 Issue 3 (2024)                        84                                doi: 10.36922/ijb.2311
   87   88   89   90   91   92   93   94   95   96   97