Page 93 - IJB-10-3
        P. 93
     International Journal of Bioprinting                                  3D printing technology in neurotrauma
               dysfunction after spinal cord injury in rats. Regen Biomater.      doi: 10.1166/jbn.2017.2348
               2022;9:rbac014.                                 179. Wu Z, Li Q, Xie S, Shan X, Cai Z. In vitro and in vivo
               doi: 10.1093/rb/rbac014
                                                                  biocompatibility evaluation of a 3D bioprinted gelatin-
            172. Qian Y, Gong J, Lu K, et al. DLP printed hDPSC-loaded   sodium alginate/rat Schwann-cell scaffold. Mater Sci Eng C.
               GelMA microsphere regenerates dental pulp and repairs   2020;109:110530.
               spinal cord. Biomaterials. 2023;299:122137.        doi: 10.1016/j.msec.2019.110530
               doi: 10.1016/j.biomaterials.2023.122137         180. Silva NA, Salgado AJ, Sousa RA, et al. Development and
            173. Qiu C, Sun Y, Li J, et al. Therapeutic effect of biomimetic   characterization of a novel hybrid tissue engineering-based
               scaffold loaded with human amniotic epithelial cell-derived   scaffold for spinal cord injury repair.  Tissue Eng Part A.
               neural-like cells for spinal cord injury.  Bioengineering.   2010;16(1):45-54.
               2022;9(10).                                        doi: 10.1089/ten.TEA.2008.0559
               doi: 10.3390/bioengineering9100535              181. Liu S, Yang H, Chen D, et al. Three-dimensional bioprinting
            174.  Hu Y, Wu Y, Gou Z, et al. 3D-engineering of cellularized conduits   sodium alginate/gelatin scaffold combined with neural
               for peripheral nerve regeneration. Sci Rep. 2016;6:32184.   stem cells and oligodendrocytes markedly promoting
               doi: 10.1038/srep32184                             nerve regeneration after spinal cord injury. Regen Biomater.
                                                                  2022;9:rbac038.
            175. Li Y, Shen PP, Wang B. Induced pluripotent stem cell      doi: 10.1093/rb/rbac038
               technology for spinal cord injury: a promising alternative
               therapy. Neural Regen Res. 2021;16(8):1500-1509.   182. Wang J, Kong X, Li Q, et al. The spatial arrangement of cells
               doi: 10.4103/1673-5374.303013                      in a 3D-printed biomimetic spinal cord promotes directional
                                                                  differentiation and repairs the motor function after spinal
            176. Moradi S, Mahdizadeh H, Šarić T, et al. Research and therapy   cord injury. Biofabrication. 2021;13(4).
               with induced pluripotent stem cells (iPSCs): social, legal, and      doi: 10.1088/1758-5090/ac0c5f
               ethical considerations. Stem Cell Res Ther. 2019;10(1):341.
               doi: 10.1186/s13287-019-1455-y                  183. Qian  Y, Song  J, Zheng W,  et  al. 3D  manufacture  of  gold
                                                                  nanocomposite channels facilitates neural differentiation
            177. Gaudet  AD,  Fonken  LK.  Glial  cells  shape  pathology   and regeneration. Adv Funct Mater. 2018;28(14):1707077.
               and repair after spinal cord injury.  Neurotherapeutics.      doi: 10.1002/adfm.201707077
               2018;15(3):554-577.
               doi: 10.1007/s13311-018-0630-7                  184. Liu X, Song S, Chen Z, et al. Release of O-GlcNAc transferase
                                                                  inhibitor promotes neuronal differentiation of neural stem
            178. Sun F, Shi T, Zhou T, et al. 3D poly(lactic-co-glycolic   cells in 3D bioprinted supramolecular hydrogel scaffold for
               acid) scaffolds for treating spinal cord injury.  J Biomed   spinal cord injury repair. Acta Biomater. 2022;151:148-162.
               Nanotechnol. 2017;13(3):290-302.                   doi: 10.1016/j.actbio.2022.08.031
            Volume 10 Issue 3 (2024)                        85                                doi: 10.36922/ijb.2311





