Page 93 - IJB-10-3
P. 93
International Journal of Bioprinting 3D printing technology in neurotrauma
dysfunction after spinal cord injury in rats. Regen Biomater. doi: 10.1166/jbn.2017.2348
2022;9:rbac014. 179. Wu Z, Li Q, Xie S, Shan X, Cai Z. In vitro and in vivo
doi: 10.1093/rb/rbac014
biocompatibility evaluation of a 3D bioprinted gelatin-
172. Qian Y, Gong J, Lu K, et al. DLP printed hDPSC-loaded sodium alginate/rat Schwann-cell scaffold. Mater Sci Eng C.
GelMA microsphere regenerates dental pulp and repairs 2020;109:110530.
spinal cord. Biomaterials. 2023;299:122137. doi: 10.1016/j.msec.2019.110530
doi: 10.1016/j.biomaterials.2023.122137 180. Silva NA, Salgado AJ, Sousa RA, et al. Development and
173. Qiu C, Sun Y, Li J, et al. Therapeutic effect of biomimetic characterization of a novel hybrid tissue engineering-based
scaffold loaded with human amniotic epithelial cell-derived scaffold for spinal cord injury repair. Tissue Eng Part A.
neural-like cells for spinal cord injury. Bioengineering. 2010;16(1):45-54.
2022;9(10). doi: 10.1089/ten.TEA.2008.0559
doi: 10.3390/bioengineering9100535 181. Liu S, Yang H, Chen D, et al. Three-dimensional bioprinting
174. Hu Y, Wu Y, Gou Z, et al. 3D-engineering of cellularized conduits sodium alginate/gelatin scaffold combined with neural
for peripheral nerve regeneration. Sci Rep. 2016;6:32184. stem cells and oligodendrocytes markedly promoting
doi: 10.1038/srep32184 nerve regeneration after spinal cord injury. Regen Biomater.
2022;9:rbac038.
175. Li Y, Shen PP, Wang B. Induced pluripotent stem cell doi: 10.1093/rb/rbac038
technology for spinal cord injury: a promising alternative
therapy. Neural Regen Res. 2021;16(8):1500-1509. 182. Wang J, Kong X, Li Q, et al. The spatial arrangement of cells
doi: 10.4103/1673-5374.303013 in a 3D-printed biomimetic spinal cord promotes directional
differentiation and repairs the motor function after spinal
176. Moradi S, Mahdizadeh H, Šarić T, et al. Research and therapy cord injury. Biofabrication. 2021;13(4).
with induced pluripotent stem cells (iPSCs): social, legal, and doi: 10.1088/1758-5090/ac0c5f
ethical considerations. Stem Cell Res Ther. 2019;10(1):341.
doi: 10.1186/s13287-019-1455-y 183. Qian Y, Song J, Zheng W, et al. 3D manufacture of gold
nanocomposite channels facilitates neural differentiation
177. Gaudet AD, Fonken LK. Glial cells shape pathology and regeneration. Adv Funct Mater. 2018;28(14):1707077.
and repair after spinal cord injury. Neurotherapeutics. doi: 10.1002/adfm.201707077
2018;15(3):554-577.
doi: 10.1007/s13311-018-0630-7 184. Liu X, Song S, Chen Z, et al. Release of O-GlcNAc transferase
inhibitor promotes neuronal differentiation of neural stem
178. Sun F, Shi T, Zhou T, et al. 3D poly(lactic-co-glycolic cells in 3D bioprinted supramolecular hydrogel scaffold for
acid) scaffolds for treating spinal cord injury. J Biomed spinal cord injury repair. Acta Biomater. 2022;151:148-162.
Nanotechnol. 2017;13(3):290-302. doi: 10.1016/j.actbio.2022.08.031
Volume 10 Issue 3 (2024) 85 doi: 10.36922/ijb.2311

