Page 88 - IJB-10-3
        P. 88
     International Journal of Bioprinting                                  3D printing technology in neurotrauma
               investigation of cell-substrate interactions and improved   the  remodelling  of  neural  networks  after  traumatic  brain
               differentiation of neuron-like cells.  ACS Appl Mater   injury. Regen Biomater. 2023;10:rbac085.
               Interfaces. 2013;5(24):13012-13021.                doi: 10.1093/rb/rbac085
               doi: 10.1021/am403895k
                                                               71.  Jiang JP, Liu XY, Zhao F, et al. Three-dimensional bioprinting
            59.  Huang J, Yap N, Walter M, et al. 3D-printed polypyrrole   collagen/silk  fibroin  scaffold  combined  with  neural stem
               microneedle arrays for electronically controlled transdural   cells promotes nerve regeneration after spinal cord injury.
               drug release. ACS Biomater Sci Eng. 2022;8(4):1544-1553.   Neural Regen Res. 2020;15(5):959-968.
               doi: 10.1021/acsbiomaterials.1c01305               doi: 10.4103/1673-5374.268974
            60.  Huang Y, Wu W, Liu H, et al. 3D printing of functional nerve   72.  Li Y, Cao X, Deng W, et al. 3D printable sodium alginate-
               guide conduits. Burns Trauma. 2021;9:tkab011.      matrigel (SA-MA)  hydrogel  facilitated  ectomesenchymal
               doi: 10.1093/burnst/tkab011                        stem cells (EMSCs) neuron differentiation. J Biomater Appl.
                                                                  2021;35(6):709-719.
            61.  Gao B, Yang Q, Zhao X, Jin G, Ma Y, Xu F. 4D bioprinting      doi: 10.1177/0885328220961261
               for biomedical applications. Trends Biotechnol. 2016;34(9):
               746-756.                                        73.  Bishop ES, Mostafa S, Pakvasa M, et al. 3-D bioprinting
               doi: 10.1016/j.tibtech.2016.03.004                 technologies in tissue engineering and regenerative medicine:
                                                                  current and future trends. Genes Dis. 2017;4(4):185-195.
            62.  Tse C, Whiteley R, Yu T, et al. Inkjet printing Schwann cells      doi: 10.1016/j.gendis.2017.10.002
               and neuronal analogue  NG108-15 cells.  Biofabrication.
               2016;8(1):015017.                               74.  Sanz-Garcia  A,  Sodupe-Ortega  E, Pernía-Espinoza
               doi: 10.1088/1758-5090/8/1/015017                  A,  Shimizu  T,  Escobedo-Lucea  C.  A  versatile  open-
                                                                  source printhead for low-cost 3D microextrusion-based
            63.  Gu Q, Tomaskovic-Crook E, Lozano R, et al. Functional   bioprinting. Polymers. 2020;12(10).
               3D neural mini-tissues from printed gel-based bioink      doi: 10.3390/polym12102346
               and human neural stem cells.  Adv  Healthc Mater.
               2016;5(12):1429-1438.                           75.  Gauvin R, Chen YC, Lee JW, et al. Microfabrication of complex
               doi: 10.1002/adhm.201600095                        porous  tissue  engineering  scaffolds  using  3D  projection
                                                                  stereolithography. Biomaterials. 2012;33(15):3824-3834.
            64.  Lorber B, Hsiao WK, Hutchings IM, Martin KR. Adult rat      doi: 10.1016/j.biomaterials.2012.01.048
               retinal ganglion cells and glia can be printed by piezoelectric
               inkjet printing. Biofabrication. 2014;6(1):015001.   76.  Mandrycky C, Wang Z, Kim K, Kim DH. 3D bioprinting
               doi: 10.1088/1758-5082/6/1/015001                  for engineering complex tissues. Biotechnol Adv. 2016;34(4):
                                                                  422-434.
            65.  Pateman CJ, Harding AJ, Glen A, et al. Nerve guides      doi: 10.1016/j.biotechadv.2015.12.011
               manufactured from photocurable polymers to aid peripheral
               nerve repair. Biomaterials. 2015;49:77-89.      77.  Wang Z, Abdulla R, Parker B, Samanipour R, Ghosh S, Kim
               doi: 10.1016/j.biomaterials.2015.01.055            K. A simple and high-resolution stereolithography-based 3D
                                                                  bioprinting system using visible light crosslinkable bioinks.
            66.  Choudary R, Saini N, Chopra DS, Singh D, Singh N. A   Biofabrication. 2015;7(4):045009.
               comprehensive review of 3D bioprinting biomaterials:      doi: 10.1088/1758-5090/7/4/045009
               properties, strategies and wound healing application.  J
               Mater Res. 2023;38(13):3264-3300.               78.  Tao J, Zhang J, Du T, et al. Rapid 3D printing of functional
               doi: 10.1557/s43578-023-01078-7                    nanoparticle-enhanced conduits for effective nerve repair.
                                                                  Acta Biomater. 2019;90:49-59.
            67.  Yan X, Tong Y, Wang X, Hou F, Liang J. Extrusion-based      doi: 10.1016/j.actbio.2019.03.047
               3D-printed supercapacitors: recent progress and challenges.
               Energy Environ Mater. 2022;5(3):800-822.        79.  Derakhshanfar S, Mbeleck R, Xu K, Zhang X, Zhong W,
               doi: 10.1002/eem2.12260                            Xing M. 3D bioprinting for biomedical devices and tissue
                                                                  engineering: a review of recent trends and advances. Bioact
            68.  Cui H, Nowicki M, Fisher JP, Zhang LG. 3D bioprinting for   Mater. 2018;3(2):144-156.
               organ regeneration. Adv Healthc Mater. 2017;6(1).      doi: 10.1016/j.bioactmat.2017.11.008
               doi: 10.1002/adhm.201601118
                                                               80.  Kim SH, Yeon YK, Lee JM, et al. Precisely printable and
            69.  Wang R, Wang Y, Yao B, et al. Redirecting differentiation   biocompatible silk fibroin bioink for digital light processing
               of mammary progenitor cells by 3D bioprinted sweat gland   3D printing. Nat Commun. 2018;9(1):1620.
               microenvironment. Burns Trauma. 2019;7:29.         doi: 10.1038/s41467-018-03759-y
               doi: 10.1186/s41038-019-0167-y
                                                               81.  Liu X, Tao J, Liu J, et al. 3D Printing enabled customization
            70.  Liu X, Zhang J, Cheng X, et al. Integrated printed BDNF-  of functional microgels.  ACS Appl Mater Interfaces.
               stimulated HUCMSCs-derived exosomes/collagen/chitosan   2019;11(13):12209-12215.
               biological scaffolds with 3D printing technology promoted      doi: 10.1021/acsami.8b18701
            Volume 10 Issue 3 (2024)                        80                                doi: 10.36922/ijb.2311





