Page 88 - IJB-10-3
P. 88
International Journal of Bioprinting 3D printing technology in neurotrauma
investigation of cell-substrate interactions and improved the remodelling of neural networks after traumatic brain
differentiation of neuron-like cells. ACS Appl Mater injury. Regen Biomater. 2023;10:rbac085.
Interfaces. 2013;5(24):13012-13021. doi: 10.1093/rb/rbac085
doi: 10.1021/am403895k
71. Jiang JP, Liu XY, Zhao F, et al. Three-dimensional bioprinting
59. Huang J, Yap N, Walter M, et al. 3D-printed polypyrrole collagen/silk fibroin scaffold combined with neural stem
microneedle arrays for electronically controlled transdural cells promotes nerve regeneration after spinal cord injury.
drug release. ACS Biomater Sci Eng. 2022;8(4):1544-1553. Neural Regen Res. 2020;15(5):959-968.
doi: 10.1021/acsbiomaterials.1c01305 doi: 10.4103/1673-5374.268974
60. Huang Y, Wu W, Liu H, et al. 3D printing of functional nerve 72. Li Y, Cao X, Deng W, et al. 3D printable sodium alginate-
guide conduits. Burns Trauma. 2021;9:tkab011. matrigel (SA-MA) hydrogel facilitated ectomesenchymal
doi: 10.1093/burnst/tkab011 stem cells (EMSCs) neuron differentiation. J Biomater Appl.
2021;35(6):709-719.
61. Gao B, Yang Q, Zhao X, Jin G, Ma Y, Xu F. 4D bioprinting doi: 10.1177/0885328220961261
for biomedical applications. Trends Biotechnol. 2016;34(9):
746-756. 73. Bishop ES, Mostafa S, Pakvasa M, et al. 3-D bioprinting
doi: 10.1016/j.tibtech.2016.03.004 technologies in tissue engineering and regenerative medicine:
current and future trends. Genes Dis. 2017;4(4):185-195.
62. Tse C, Whiteley R, Yu T, et al. Inkjet printing Schwann cells doi: 10.1016/j.gendis.2017.10.002
and neuronal analogue NG108-15 cells. Biofabrication.
2016;8(1):015017. 74. Sanz-Garcia A, Sodupe-Ortega E, Pernía-Espinoza
doi: 10.1088/1758-5090/8/1/015017 A, Shimizu T, Escobedo-Lucea C. A versatile open-
source printhead for low-cost 3D microextrusion-based
63. Gu Q, Tomaskovic-Crook E, Lozano R, et al. Functional bioprinting. Polymers. 2020;12(10).
3D neural mini-tissues from printed gel-based bioink doi: 10.3390/polym12102346
and human neural stem cells. Adv Healthc Mater.
2016;5(12):1429-1438. 75. Gauvin R, Chen YC, Lee JW, et al. Microfabrication of complex
doi: 10.1002/adhm.201600095 porous tissue engineering scaffolds using 3D projection
stereolithography. Biomaterials. 2012;33(15):3824-3834.
64. Lorber B, Hsiao WK, Hutchings IM, Martin KR. Adult rat doi: 10.1016/j.biomaterials.2012.01.048
retinal ganglion cells and glia can be printed by piezoelectric
inkjet printing. Biofabrication. 2014;6(1):015001. 76. Mandrycky C, Wang Z, Kim K, Kim DH. 3D bioprinting
doi: 10.1088/1758-5082/6/1/015001 for engineering complex tissues. Biotechnol Adv. 2016;34(4):
422-434.
65. Pateman CJ, Harding AJ, Glen A, et al. Nerve guides doi: 10.1016/j.biotechadv.2015.12.011
manufactured from photocurable polymers to aid peripheral
nerve repair. Biomaterials. 2015;49:77-89. 77. Wang Z, Abdulla R, Parker B, Samanipour R, Ghosh S, Kim
doi: 10.1016/j.biomaterials.2015.01.055 K. A simple and high-resolution stereolithography-based 3D
bioprinting system using visible light crosslinkable bioinks.
66. Choudary R, Saini N, Chopra DS, Singh D, Singh N. A Biofabrication. 2015;7(4):045009.
comprehensive review of 3D bioprinting biomaterials: doi: 10.1088/1758-5090/7/4/045009
properties, strategies and wound healing application. J
Mater Res. 2023;38(13):3264-3300. 78. Tao J, Zhang J, Du T, et al. Rapid 3D printing of functional
doi: 10.1557/s43578-023-01078-7 nanoparticle-enhanced conduits for effective nerve repair.
Acta Biomater. 2019;90:49-59.
67. Yan X, Tong Y, Wang X, Hou F, Liang J. Extrusion-based doi: 10.1016/j.actbio.2019.03.047
3D-printed supercapacitors: recent progress and challenges.
Energy Environ Mater. 2022;5(3):800-822. 79. Derakhshanfar S, Mbeleck R, Xu K, Zhang X, Zhong W,
doi: 10.1002/eem2.12260 Xing M. 3D bioprinting for biomedical devices and tissue
engineering: a review of recent trends and advances. Bioact
68. Cui H, Nowicki M, Fisher JP, Zhang LG. 3D bioprinting for Mater. 2018;3(2):144-156.
organ regeneration. Adv Healthc Mater. 2017;6(1). doi: 10.1016/j.bioactmat.2017.11.008
doi: 10.1002/adhm.201601118
80. Kim SH, Yeon YK, Lee JM, et al. Precisely printable and
69. Wang R, Wang Y, Yao B, et al. Redirecting differentiation biocompatible silk fibroin bioink for digital light processing
of mammary progenitor cells by 3D bioprinted sweat gland 3D printing. Nat Commun. 2018;9(1):1620.
microenvironment. Burns Trauma. 2019;7:29. doi: 10.1038/s41467-018-03759-y
doi: 10.1186/s41038-019-0167-y
81. Liu X, Tao J, Liu J, et al. 3D Printing enabled customization
70. Liu X, Zhang J, Cheng X, et al. Integrated printed BDNF- of functional microgels. ACS Appl Mater Interfaces.
stimulated HUCMSCs-derived exosomes/collagen/chitosan 2019;11(13):12209-12215.
biological scaffolds with 3D printing technology promoted doi: 10.1021/acsami.8b18701
Volume 10 Issue 3 (2024) 80 doi: 10.36922/ijb.2311

