Page 91 - IJB-10-3
P. 91
International Journal of Bioprinting 3D printing technology in neurotrauma
128. Heo DN, Lee SJ, Timsina R, Qiu X, Castro NJ, Zhang LG. doi: 10.1038/nm1400
Development of 3D printable conductive hydrogel with 139. Cheng X, Wang H, Zhang X, et al. The role of SDF-1/CXCR4/
crystallized PEDOT:PSS for neural tissue engineering. CXCR7 in neuronal regeneration after cerebral ischemia.
Mater Sci Eng C Mater Biol Appl. 2019;99:582-590. Front Neurosci. 2017;11:590.
doi: 10.1016/j.msec.2019.02.008
doi: 10.3389/fnins.2017.00590
129. Song S, Li Y, Huang J, Cheng S, Zhang Z. Inhibited astrocytic
differentiation in neural stem cell-laden 3D bioprinted 140. Li C, Kuss M, Kong Y, et al. 3D printed hydrogels with
conductive composite hydrogel scaffolds for repair of spinal aligned microchannels to guide neural stem cell migration.
cord injury. Biomater Adv. 2023;148:213385. ACS Biomater Sci Eng. 2021;7(2):690-700.
doi: 10.1016/j.bioadv.2023.213385 doi: 10.1021/acsbiomaterials.0c01619
141. Kim TH, Yoon SJ, Lee SM. Genipin attenuates sepsis
130. Vijayavenkataraman S, Zhang S, Thaharah S, Sriram G, Lu
WF, Fuh JYH. Electrohydrodynamic jet 3D printed nerve by inhibiting Toll-like receptor signaling. Mol Med.
guide conduits (NGCs) for peripheral nerve injury repair. 2012;18(1):455-465.
Polymers. 2018;10(7). doi: 10.2119/molmed.2011.00308
doi: 10.3390/polym10070753 142. Da Silva K, Kumar P, van Vuuren SF, Pillay V, Choonara
131. Vijayavenkataraman S, Kannan S, Cao T, Fuh JYH, Sriram YE. Three-dimensional printability of an ECM-based
G, Lu WF. 3D-printed PCL/PPy conductive scaffolds as gelatin methacryloyl (GelMA) biomaterial for potential
three-dimensional porous nerve guide conduits (NGCs) neuroregeneration. ACS Omega. 2021;6(33):21368-21383.
for peripheral nerve injury repair. Front Bioeng Biotechnol. doi: 10.1021/acsomega.1c01903
2019;7:266. 143. Chang HM, Liu CH, Hsu WM, et al. Proliferative effects
doi: 10.3389/fbioe.2019.00266 of melatonin on Schwann cells: implication for nerve
132. Vijayavenkataraman S, Thaharah S, Zhang S, Lu WF, Fuh JYH. regeneration following peripheral nerve injury. J Pineal Res.
3D-printed PCL/rGO conductive scaffolds for peripheral 2014;56(3):322-332.
nerve injury repair. Artif Organs. 2019;43(5):515-523. doi: 10.1111/jpi.12125
doi: 10.1111/aor.13360 144. Qian Y, Han Q, Zhao X, et al. 3D melatonin nerve scaffold
133. Vijayavenkataraman S, Thaharah S, Zhang S, Lu WF, Fuh reduces oxidative stress and inflammation and increases
JYH. Electrohydrodynamic jet 3D-printed PCL/PAA autophagy in peripheral nerve regeneration. J Pineal Res.
conductive scaffolds with tunable biodegradability as nerve 2018;65(4):e12516.
guide conduits (NGCs) for peripheral nerve injury repair. doi: 10.1111/jpi.12516
Mater Des. 2019;162:171-184. 145. Xu X, Tao J, Wang S, et al. 3D printing of nerve conduits with
doi: 10.1016/j.matdes.2018.11.044 nanoparticle-encapsulated RGFP966. Appl Mater Today.
134. Qian Y, Zhao X, Han Q, Chen W, Li H, Yuan W. An integrated 2019;16:247-256.
multi-layer 3D-fabrication of PDA/RGD coated graphene doi: 10.1016/j.apmt.2019.05.014
loaded PCL nanoscaffold for peripheral nerve restoration. 146. Zhang J, Chen Y, Huang Y, et al. A 3D-printed self-adhesive
Nat Commun. 2018;9(1):323. bandage with drug release for peripheral nerve repair. Adv
doi: 10.1038/s41467-017-02598-7 Sci. 2020;7(23):2002601.
135. Zhu W, Tringale KR, Woller SA, et al. Rapid continuous doi: 10.1002/advs.202002601
3D printing of customizable peripheral nerve guidance 147. Holtzman DM, Sheldon RA, Jaffe W, Cheng Y, Ferriero
conduits. Mater Today. 2018;21(9):951-959. DM. Nerve growth factor protects the neonatal brain
doi: 10.1016/j.mattod.2018.04.001 against hypoxic-ischemic injury. Ann Neurol. 1996;39(1):
136. Liu K, Yan L, Li R, et al. 3D printed personalized nerve guide 114-122.
conduits for precision repair of peripheral nerve defects. doi: 10.1002/ana.410390117
Adv Sci. 2022;9(12):e2103875. 148. Keefe KM, Sheikh IS, Smith GM. Targeting neurotrophins to
doi: 10.1002/advs.202103875 specific populations of neurons: NGF, BDNF, and NT-3 and
137. Song S, Zhou J, Wan J, et al. Three-dimensional printing of their relevance for treatment of spinal cord injury. Int J Mol
microfiber- reinforced hydrogel loaded with oxymatrine for Sci. 2017;18(3).
treating spinal cord injury. Int J Bioprint. 2023;9(3):692. doi: 10.3390/ijms18030548
doi: 10.18063/ijb.692
149. Liu XY, Chen C, Xu HH, et al. Integrated printed BDNF/
138. Jin DK, Shido K, Kopp HG, et al. Cytokine-mediated collagen/chitosan scaffolds with low temperature extrusion
deployment of SDF-1 induces revascularization through 3D printer accelerated neural regeneration after spinal cord
recruitment of CXCR4+ hemangiocytes. Nat Med. injury. Regen Biomater. 2021;8(6):rbab047.
2006;12(5):557-567. doi: 10.1093/rb/rbab047
Volume 10 Issue 3 (2024) 83 doi: 10.36922/ijb.2311

