Page 91 - IJB-10-3
P. 91

International Journal of Bioprinting                                  3D printing technology in neurotrauma




            128. Heo DN, Lee SJ, Timsina R, Qiu X, Castro NJ, Zhang LG.      doi: 10.1038/nm1400
               Development of 3D printable conductive hydrogel with   139. Cheng X, Wang H, Zhang X, et al. The role of SDF-1/CXCR4/
               crystallized PEDOT:PSS for neural tissue engineering.   CXCR7 in neuronal regeneration after cerebral ischemia.
               Mater Sci Eng C Mater Biol Appl. 2019;99:582-590.   Front Neurosci. 2017;11:590.
               doi: 10.1016/j.msec.2019.02.008
                                                                  doi: 10.3389/fnins.2017.00590
            129. Song S, Li Y, Huang J, Cheng S, Zhang Z. Inhibited astrocytic
               differentiation in neural stem cell-laden 3D bioprinted   140. Li C, Kuss M, Kong Y, et al. 3D printed hydrogels with
               conductive composite hydrogel scaffolds for repair of spinal   aligned microchannels to guide neural stem cell migration.
               cord injury. Biomater Adv. 2023;148:213385.        ACS Biomater Sci Eng. 2021;7(2):690-700.
               doi: 10.1016/j.bioadv.2023.213385                  doi: 10.1021/acsbiomaterials.0c01619
                                                               141. Kim TH, Yoon SJ, Lee SM. Genipin attenuates sepsis
            130. Vijayavenkataraman S, Zhang S, Thaharah S, Sriram G, Lu
               WF, Fuh JYH. Electrohydrodynamic jet 3D printed nerve   by inhibiting Toll-like receptor signaling.  Mol Med.
               guide conduits (NGCs) for peripheral nerve injury repair.   2012;18(1):455-465.
               Polymers. 2018;10(7).                              doi: 10.2119/molmed.2011.00308
               doi: 10.3390/polym10070753                      142. Da Silva K, Kumar P, van Vuuren SF, Pillay V, Choonara
            131. Vijayavenkataraman S, Kannan S, Cao T, Fuh JYH, Sriram   YE. Three-dimensional printability of an ECM-based
               G, Lu WF. 3D-printed PCL/PPy conductive scaffolds as   gelatin methacryloyl (GelMA) biomaterial for potential
               three-dimensional porous nerve guide conduits (NGCs)   neuroregeneration. ACS Omega. 2021;6(33):21368-21383.
               for peripheral nerve injury repair. Front Bioeng Biotechnol.      doi: 10.1021/acsomega.1c01903
               2019;7:266.                                     143. Chang HM, Liu CH, Hsu WM, et al. Proliferative effects
               doi: 10.3389/fbioe.2019.00266                      of melatonin on Schwann cells: implication for nerve
            132. Vijayavenkataraman S, Thaharah S, Zhang S, Lu WF, Fuh JYH.   regeneration following peripheral nerve injury. J Pineal Res.
               3D-printed  PCL/rGO  conductive  scaffolds  for  peripheral   2014;56(3):322-332.
               nerve injury repair. Artif Organs. 2019;43(5):515-523.      doi: 10.1111/jpi.12125
               doi: 10.1111/aor.13360                          144. Qian Y, Han Q, Zhao X, et al. 3D melatonin nerve scaffold
            133. Vijayavenkataraman S, Thaharah S, Zhang S, Lu WF, Fuh   reduces oxidative stress and inflammation and increases
               JYH. Electrohydrodynamic jet 3D-printed PCL/PAA    autophagy in peripheral nerve regeneration.  J Pineal Res.
               conductive scaffolds with tunable biodegradability as nerve   2018;65(4):e12516.
               guide conduits (NGCs) for peripheral nerve injury repair.      doi: 10.1111/jpi.12516
               Mater Des. 2019;162:171-184.                    145. Xu X, Tao J, Wang S, et al. 3D printing of nerve conduits with
               doi: 10.1016/j.matdes.2018.11.044                  nanoparticle-encapsulated RGFP966.  Appl Mater Today.
            134. Qian Y, Zhao X, Han Q, Chen W, Li H, Yuan W. An integrated   2019;16:247-256.
               multi-layer 3D-fabrication of PDA/RGD coated graphene      doi: 10.1016/j.apmt.2019.05.014
               loaded PCL nanoscaffold for peripheral nerve restoration.   146. Zhang J, Chen Y, Huang Y, et al. A 3D-printed self-adhesive
               Nat Commun. 2018;9(1):323.                         bandage with drug release for peripheral nerve repair. Adv
               doi: 10.1038/s41467-017-02598-7                    Sci. 2020;7(23):2002601.
            135. Zhu W, Tringale KR, Woller SA, et al. Rapid continuous      doi: 10.1002/advs.202002601
               3D printing of customizable peripheral nerve guidance   147. Holtzman DM, Sheldon RA, Jaffe W, Cheng Y, Ferriero
               conduits. Mater Today. 2018;21(9):951-959.         DM. Nerve growth factor protects the neonatal brain
               doi: 10.1016/j.mattod.2018.04.001                  against hypoxic-ischemic injury.  Ann Neurol. 1996;39(1):
            136. Liu K, Yan L, Li R, et al. 3D printed personalized nerve guide   114-122.
               conduits  for  precision  repair  of  peripheral  nerve  defects.      doi: 10.1002/ana.410390117
               Adv Sci. 2022;9(12):e2103875.                   148. Keefe KM, Sheikh IS, Smith GM. Targeting neurotrophins to
               doi: 10.1002/advs.202103875                        specific populations of neurons: NGF, BDNF, and NT-3 and
            137. Song S, Zhou J, Wan J, et al. Three-dimensional printing of   their relevance for treatment of spinal cord injury. Int J Mol
               microfiber- reinforced hydrogel loaded with oxymatrine for   Sci. 2017;18(3).
               treating spinal cord injury. Int J Bioprint. 2023;9(3):692.      doi: 10.3390/ijms18030548
               doi: 10.18063/ijb.692
                                                               149. Liu XY, Chen C, Xu HH, et al. Integrated printed BDNF/
            138. Jin DK, Shido K, Kopp HG, et al. Cytokine-mediated   collagen/chitosan scaffolds with low temperature extrusion
               deployment of SDF-1 induces revascularization through   3D printer accelerated neural regeneration after spinal cord
               recruitment of CXCR4+ hemangiocytes.  Nat Med.     injury. Regen Biomater. 2021;8(6):rbab047.
               2006;12(5):557-567.                                doi: 10.1093/rb/rbab047



            Volume 10 Issue 3 (2024)                        83                                doi: 10.36922/ijb.2311
   86   87   88   89   90   91   92   93   94   95   96