Page 75 - IJB-4-2
P. 75

Novel ultrashort self-assembling peptide bioinks for 3D culture of muscle myoblast cells

           context of engineering skeletal muscle tissue, providing   adma.201104631
           the chance to rebuild missing, failing, or damaged   7.   Sato M, Ito A, Kawabe Y, et al., 2011, Enhanced contractile
           muscles parts in the future.
                                                                  force generation by artificial skeletal muscle tissues
           Acknowledgments                                        using IGF-I gene-engineered myoblast cells. J Biosci
           We want to thank Ms. Soumaya Belkharchouche for        Bioeng, 112(3): 273–278. http://dx.doi.org/10.1016/
           kindly proof-reading the manuscript. The research      j.jbiosc.2011.05.007
           reported in this publication was supported by funding   8.   Lepper C, Partridge T A, Fan C M, 2011, An absolute
           from King Abdullah University of Science and           requirement for Pax7-positive satellite cells in acute injury-
           Technology (KAUST).
                                                                  induced skeletal muscle regeneration. Development, 138(17):
           Author Contributions                                   3639–3646. http://dx.doi.org/10.1242/dev.067595

           C.A.E.H designed and supervised the project. W.A    9.   Kuraitis D, Giordano C, Ruel M, et al., 2012, Exploiting
           performed the majority of the experiments and wrote    extracellular matrix-stem cell interactions: A review of
           the manuscript, S.R carried out the printing using the   natural materials for therapeutic muscle regeneration.
           peptide bioinks and helped with editing the manuscript,   Biomaterials, 33(2): 428–443. http://dx.doi.org/10.1016/
           and O.H took the SEM images.                           j.biomaterials.2011.09.078
           Conflict of Interest and Funding                    10.  Atala A, Bauer S B, Soker S, et al., 2006, Tissue-engineered

           The authors declare that they do not have any competing   autologous bladders for patients needing cystoplasty.
           interests.                                             Lancet, 367(9518): 1241–1246.http://dx.doi:10.1016/S0140-
           References                                             6736(06)68438-9
                                                               11.  Carsin H, Ainaud P, Le Bever H, et al., 2000, Cultured
           1.   Stilhano R S, Madrigal J L, Wong K, et al., 2016, Injectable   epithelial autografts in extensive burn coverage of severely
               alginate hydrogel for enhanced spatiotemporal control   traumatized patients: A five year single center experience
               of lentivector delivery in murine skeletal muscle.  J   with 30 patients. Burns, 26(4): 379–387. http://dx.doi.
               Control Release, 237: 42–49. http://dx.doi.org/10.1016/  org/10.1016/S0305-4179(99)00143-6
               j.jconrel.2016.06.047                           12.  Raya-Rivera A, Esquiliano D R, Yoo J J, et al., 2011, Tissue-
           2.   Chaturvedi V,  Dye D E,  Kinnear B F,  et al., 2015,   engineered autologous urethras for patients who need
               Interactions between skeletal muscle myoblasts and their   reconstruction: An observational study. Lancet, 377(9772):
               extracellular matrix revealed by a serum free culture system.   1175–1182.http://dx.doi.org/10.1016/S01406736(10)62354-
               PLO S, 10(6): 1–27. https://dx.doi.org/10.1371/journal.  9
               pone.0127675                                    13.  Warnke P H, Springer I N, Wiltfang J, et al., 2004, Growth
           3.   Järvinen T A H, Järvinen T L N, Kääriäinen M, et al.,   and transplantation of a custom vascularised bone graft in a
               2007, Muscle injuries: Optimising recovery. Best Pract Res   man. Lancet, 364(9436): 766–770.http://dx.doi.org/10.1016/
               Clin Rheumatol, 2(2): 317–331. http://dx.doi.org/10.1016/  S01406736(04)16935-36
               berh.2006.12.004                                14.  Atala A, Kasper F K, Mikos A G, 2012, Engineering
           4.   Manring H, Abreu E, Brotto N,  et al., 2014, Novel   complex tissues. Sci Transl Med, 4(160): 160 rv12. http://
               excitation-contraction coupling related genes reveal aspects   dx.doi.org/10.1126/scitranslmed.3004890
               of muscle weakness beyond atrophy: New hopes for   15.  Murphy S V, Atala A, 2014, 3D bioprinting of tissues and
               treatment of musculoskeletal diseases. Front Physiol, 5:   organs. Nat Biotechnol, 32(8): 773–785. http://dx.doi.
               1–12. http://dx.doi:10.3389/fphys.2014.00037       org/10.1038/nbt.2958
           5.   Grasman J M, Zayas M J, Page R L, et al., 2015, Biomimetic   16.  Derby B, 2012, Printing, and prototyping of tissues and
               scaffolds for regeneration of volumetric muscle loss in   scaffolds. Science, 338(6109): 921–926. http://dx.doi.
               skeletal muscle injuries. Acta Biomater, 25: 2–15. http://  org/10.1126/science.1226340
               dx.doi.org/10.1016/j.actbio.2015.07.038         17.  Sundaramurthi D, Rauf S, Hauser C A, 2016, 3D bioprinting
           6.   Zorlutuna P, Annabi N, Camci-Unal G, et al., 2012,   technology for regenerative medicine applications. Int
               Microfabricated biomaterials for engineering 3D tissues.   J Bioprint, 2(2): 117–135. http://dx.doi.org/10.18063/
               Adv Mater, 24(14): 1782–1804. https://dx.doi:10.1002/  IJB.2016.02.010


           10                          International Journal of Bioprinting (2018)–Volume 4, Issue 2
   70   71   72   73   74   75   76   77   78   79   80