Page 77 - IJB-4-2
P. 77
Novel ultrashort self-assembling peptide bioinks for 3D culture of muscle myoblast cells
derived bioink. Adv Healthc Mater, 5(20): 2636–2645. 53. Kuen Y L, David J M, 2012, Alginate: Properties and
http://dx.doi.org/10.1002/adhm. 201600483 biomedical applications, Prog Polym Sci, 37(1): 106–126.
42. Fedorovich N E, De Wijn J R, Verbout A J, et al., 2008, http://dx.doi.org/10.1016/j.progpolymsci.2011. 06.003
Three-dimensional fiber deposition of cell-laden, viable, 54. Dreesmann L, Ahlers M, Schlosshauer B L, 2007, The pro-
patterned constructs for bone tissue printing. Tissue Eng Part angiogenic characteristics of a cross-linked gelatin matrix.
A, 14(1): 127–133. http://dx.doi.org/10.1089/ten.a.2007.0158 Biomaterials, 28(36): 5536–5543. http://dx.doi.org/10.1016/
43. Aviss K J, Gough J E, Downes S, 2010, Aligned electrospun j.biomaterials.2007.0.040
polymer fibres for skeletal muscle regeneration. Eur Cell 55. Sandrasegaran K, Lall C, Rajesh A, et al., 2005, Distinguishing
Mater, 19(1): 193–204. http://dx.doi.org/10.22203/eCM. gelatin bioabsorbable sponge and postoperative abdominal
v019a19 abscess on. Am J Roentgenol, 184(2): 475–480. http://dx.doi.
44. Macchiarini P, Jungebluth P, Go T, et al., 2008, Clinical org/10.2214/ajr.184.2.01840475
transplantation of a tissue-engineered airway. Lancet, 56. Balakrishnan B, Mohanty M, Umashankar P R, et
372(9655): 2023–2030. http://dx.doi.org/10.1016/ al., 2005, Evaluation of an in situ forming hydrogel
S01406736(08)61598-6 wound dressing based on oxidized alginate and gelatin,
45. Martinello T, Bronzini I, Volpin A, et al., 2012, Successful Biomaterials, 26(32), 6335–6342. http://dx.doi.org/10.1016/
recellularization of human tendon scaffolds using adipose- j.biomaterials.2005.04.012
derived mesenchymal stem cells and collagen gel. J Tissue 57. Rosellini E, Cristallini C, Barbani N, et al., 2009, Pre-
Eng Regen Med, 8(8): 612–619. http://dx.doi.org/10.1002/ paration and characterization of alginate-gelatin blend films
term.1557 for cardiac tissue engineering. J Biomed Mater Res A, 91(2):
46. Badylak S F, 2004, Xenogeneic extracellular matrix as a 447–453. http://dx.doi.org/10.1002/jbm.a.32216
scaffold for tissue reconstruction. Transpl Immunol, 12(3–4): 58. Dong Z, Wang Q, Du Y, 2006, Blend films and their
367–377. http://dx.doi.org/10.1016/j.trim.2003.12.016 properties for drug controlled release. J Memb Sci, 280(1–2):
47. Jia J, Richards D J, Pollard S, et al., 2014, Engineering 37–44. http://dx.doi.org/10.1016/j.memsci. 2006.01.002
alginate as bioink for bioprinting. Acta Biomater, 10(10): 59. Fan L, Du L, Huang R, et al., 2005, Preparation and
4323–4331. http://dx.doi.org/10.1016/j.actbio.2014.06.034 characterization of alginate-gelatin blend fibers. J Appl
48. Pataky K, Braschler T, Negro A, et al., 2012 Microdrop Polym Sci, 96(5):1625–1629. http://dx.doi.org/10.1002/
printing of hydrogel bioinks into 3D tissue like geometries. app.21610
Adv Mater, 24(3): 391–396. http://dx.doi.org/10.1002/ 60. Li S, Yan Y, Xiong Z, et al., 2009, Gradient hydrogel
adma.201102800 construct based on an improved cell assembling system.
49. Huijun L, Tan Y J, Leong K F, et al., 2017, 3D bioprinting J Bioact Compat Polym, 24(1): 84–99. http://dx.doi.
of highly thixotropic alginate/methylcellulose hydrogel org/10.1177/0883911509103357
with strong interface bonding. ACS Appl Mater Interfaces, 61. Yan Y, Wang X, Xiong Z, 2005, Direct construction of
9(23): 20086–20097. http://dx.doi.org/10.1002/10.1021/ a three-dimensional structure with cells and hydrogel.
acsami.7b04216 J Bioact Compat Polym, 20(3): 259–269. http://dx.doi.
50. Li H, Liu S, Li L, 2016, Rheological study on 3D printability org/10.1177/08839115050536858
of alginate hydrogel and effect of graphene oxide. Int 62. Li S, Yan Y, Xiong Z, et al., 2009, Gradient hydrogel
J Bioprint, 2(2): 54–66. http://dx.doi.org/10.18063/ construct based on an improved cell assembling system.
IJB.2016.02.007 J Bioact Compat Polym, 24(1): 84–99. http://dx.doi.
51. Luo N C and Grover L M, 2010, Cell encapsulation using org/10.1177/0883911509103357
biopolymer gels for regenerative medicine. Biotechnol Lett, 63. Roberto D, Kenneth C H, 2011, Actin structure and function.
32(6): 733−742. http://dx.doi.org/10.1007/s10529-010-0221- Annu Rev Biophys, 40: 169–186. http://dx.doi. org/10.1146/
0 annurev-biophys-042910-155359
52. Luo K, Yang Y, Shao Z, 2016, Physically crosslinked 64. Dado D, Levenberg S, 2009, Cell-scaffold mechanical
biocompatible silk-fibroin-based hydrogels with high interplay within engineered tissue. Semin Cell Dev Biol,
mechanical performance. Adv Funct Mater, 26(6): 872−880. 20(6): 656–664. http:// dx. doi. org/ 10. 1016/ j. semcdb.
http://dx.doi.org/10.1002/adfm.201503450 2009.02.001
12 International Journal of Bioprinting (2018)–Volume 4, Issue 2

