Page 77 - IJB-4-2
P. 77

Novel ultrashort self-assembling peptide bioinks for 3D culture of muscle myoblast cells

               derived bioink. Adv Healthc Mater, 5(20): 2636–2645.   53.  Kuen Y L, David J M, 2012, Alginate: Properties and
               http://dx.doi.org/10.1002/adhm. 201600483          biomedical applications, Prog Polym Sci, 37(1): 106–126.
           42.  Fedorovich N E, De Wijn J R, Verbout A J, et al., 2008,   http://dx.doi.org/10.1016/j.progpolymsci.2011. 06.003
               Three-dimensional fiber deposition of cell-laden, viable,   54.  Dreesmann L, Ahlers M, Schlosshauer B L, 2007, The pro-
               patterned constructs for bone tissue printing. Tissue Eng Part   angiogenic characteristics of a cross-linked gelatin matrix.
               A, 14(1): 127–133. http://dx.doi.org/10.1089/ten.a.2007.0158    Biomaterials, 28(36): 5536–5543. http://dx.doi.org/10.1016/
           43.  Aviss K J, Gough J E, Downes S, 2010, Aligned electrospun   j.biomaterials.2007.0.040
               polymer fibres for skeletal muscle regeneration. Eur Cell   55.  Sandrasegaran K, Lall C, Rajesh A, et al., 2005, Distinguishing
               Mater, 19(1): 193–204. http://dx.doi.org/10.22203/eCM.  gelatin bioabsorbable sponge and postoperative abdominal
               v019a19                                            abscess on. Am J Roentgenol, 184(2): 475–480. http://dx.doi.
           44.  Macchiarini P, Jungebluth P, Go T, et al., 2008, Clinical   org/10.2214/ajr.184.2.01840475
               transplantation of a tissue-engineered airway. Lancet,   56.  Balakrishnan B, Mohanty M, Umashankar P R,  et
               372(9655): 2023–2030. http://dx.doi.org/10.1016/   al., 2005, Evaluation of an in situ forming hydrogel
               S01406736(08)61598-6                               wound dressing based on oxidized alginate and gelatin,
           45.  Martinello T, Bronzini I, Volpin A, et al., 2012, Successful   Biomaterials, 26(32), 6335–6342. http://dx.doi.org/10.1016/
               recellularization of human tendon scaffolds using adipose-  j.biomaterials.2005.04.012
               derived mesenchymal stem cells and collagen gel. J Tissue   57.  Rosellini E, Cristallini C, Barbani N, et al., 2009, Pre-
               Eng Regen Med, 8(8): 612–619. http://dx.doi.org/10.1002/  paration and characterization of alginate-gelatin blend films
               term.1557                                          for cardiac tissue engineering. J Biomed Mater Res A, 91(2):
           46.  Badylak S F, 2004, Xenogeneic extracellular matrix as a   447–453. http://dx.doi.org/10.1002/jbm.a.32216
               scaffold for tissue reconstruction. Transpl Immunol, 12(3–4):   58.  Dong Z, Wang Q, Du Y, 2006, Blend films and their
               367–377. http://dx.doi.org/10.1016/j.trim.2003.12.016  properties for drug controlled release. J Memb Sci, 280(1–2):
           47.  Jia J, Richards D J, Pollard S, et al., 2014, Engineering   37–44. http://dx.doi.org/10.1016/j.memsci. 2006.01.002
               alginate as bioink for bioprinting. Acta Biomater, 10(10):   59.  Fan L, Du L, Huang R, et al., 2005, Preparation and
               4323–4331. http://dx.doi.org/10.1016/j.actbio.2014.06.034      characterization of alginate-gelatin blend fibers. J Appl
           48.  Pataky K, Braschler T, Negro A, et al., 2012 Microdrop   Polym Sci, 96(5):1625–1629. http://dx.doi.org/10.1002/
               printing of hydrogel bioinks into 3D tissue like geometries.   app.21610
               Adv Mater, 24(3): 391–396. http://dx.doi.org/10.1002/  60.  Li S, Yan Y, Xiong Z, et al., 2009, Gradient hydrogel
               adma.201102800                                     construct based on an improved cell assembling system.
           49.  Huijun L, Tan Y J, Leong K F, et al., 2017, 3D bioprinting   J Bioact Compat Polym, 24(1): 84–99. http://dx.doi.
               of highly thixotropic alginate/methylcellulose hydrogel   org/10.1177/0883911509103357
               with strong interface bonding. ACS Appl Mater Interfaces,   61.  Yan Y, Wang X, Xiong Z, 2005, Direct construction of
               9(23): 20086–20097. http://dx.doi.org/10.1002/10.1021/  a three-dimensional structure with cells and hydrogel.
               acsami.7b04216                                     J Bioact Compat Polym, 20(3): 259–269. http://dx.doi.
           50.  Li H, Liu S, Li L, 2016, Rheological study on 3D printability   org/10.1177/08839115050536858
               of alginate hydrogel and effect of graphene oxide. Int   62.  Li S, Yan Y, Xiong Z, et al., 2009, Gradient hydrogel
               J  Bioprint,  2(2):  54–66.  http://dx.doi.org/10.18063/  construct based on an improved cell assembling system.
               IJB.2016.02.007                                    J Bioact Compat Polym, 24(1): 84–99. http://dx.doi.
           51.  Luo N C and Grover L M, 2010, Cell encapsulation using   org/10.1177/0883911509103357
               biopolymer gels for regenerative medicine. Biotechnol Lett,   63.  Roberto D, Kenneth C H, 2011, Actin structure and function.
               32(6): 733−742. http://dx.doi.org/10.1007/s10529-010-0221-  Annu Rev Biophys, 40: 169–186. http://dx.doi. org/10.1146/
               0                                                  annurev-biophys-042910-155359
           52.  Luo K, Yang Y, Shao Z, 2016, Physically crosslinked   64.  Dado D, Levenberg S, 2009, Cell-scaffold mechanical
               biocompatible silk-fibroin-based hydrogels with high   interplay within engineered tissue. Semin Cell Dev Biol,
               mechanical performance. Adv Funct Mater, 26(6): 872−880.   20(6): 656–664. http:// dx. doi. org/ 10. 1016/ j. semcdb.
               http://dx.doi.org/10.1002/adfm.201503450           2009.02.001

           12                          International Journal of Bioprinting (2018)–Volume 4, Issue 2
   72   73   74   75   76   77   78   79   80   81   82