Page 76 - IJB-4-2
P. 76
Arab W, et al.
18. Hauser C A, Zhang, 2010, Designer self-assembling peptide materials for skeletal-muscle-tissue engineering. Adv
nanofiber biological materials, 2010, Chem Soc Rev, 39(8): Mater, 28(48): 10588–10612. http://dx.doi.org/10.10 02/
2780–2790. http://dx.doi.org/10.1039/B921448H adma.201600240
19. Loo Y, Zhang S, Hauser C A, 2012, From short peptides to 30. Koning M, Harmsen M C, Van Luyn M J A, et al., 2009,
nanofibers to macromolecular assemblies in biomedicine. Current opportunities and challenges in skeletal muscle
Biotechnol Advs, 30(3): 593–603. http://dx.doi.org/10.1016/ tissue engineering. J Tissue Eng Regen Med, 3(6): 407–415.
j.biotechadv.2011.10.004 http://dx.doi.org/10.1002/term.190
20. Wu E C, Zhang S G, Hauser C A E, 2012, Self-assembling 31. Bian W, Bursac N, 2008, Tissue engineering of functional
peptides as cell-interactive scaffolds. Adv Funct Mater, skeletal muscle: Challenges and recent advances. IEEE Eng
22(3): 456–468. http://dx.doi.org/10.1002/adfm.201101905 Med Biol Mag, 27(5): 109–113. http://dx.doi.org/10.1109/
21. Hauser C A, Deng R, Mishra A, et al., 2011, Natural tri- to MEMB.2008.928460
hexapeptides self-assemble in water to amyloid β-type fiber 32. Pollot B E, Rathbone C R, Wenke J C, et al., 2017, Natural
aggregates by unexpected α-helical intermediate structures. polymeric hydrogel evaluation for skeletal muscle tissue
Proceed Natl Acad Sci, 108(4): 1361–1366. http://dx.doi. engineering. J Biomed Mater Res B Appl Biomater. http://
org/10.1073/pnas.1014796108 dx.doi.org/10.1002/jbm.b.33859
22. Mishra A, Loo Y, Deng R, et al., 2011, Ultrasmall natural 33. Loo Y, Lakshmanan A, Ni M, et al., 2015, Peptide bioink:
peptides self-assemble to strong temperature-resistant Self-assembling nanofibrous scaffolds for three-dimensional
helical fibers in scaffolds suitable for tissue engineering. organotypic cultures. Nano Lett, 15(10): 6919–6925. http://
Nano Today, 6: 232–239. http://dx.doi.org/10.1016/ dx.doi.org/10.1021/acs.nanolett.5b02859
j.nantod.2011.05.001 34. Taylor S E, Cao T, Talauliker P M, et al., 2013, Objective
23. Reithofer M R, Chan K H, Lakshmanan A, et al., 2014, morphological quantification of microscopic images
Ligation of anti-cancer drugs to selfassembling ultrashort using a fast fourier transform (FFT) analysis. Curr
peptides by click chemistry for localized therapy. Chem Sci, Protoc Essent Lab Tech, 7(1):9.5.1–9.5.12. http://dx.doi.
5: 625–630. https://dx.doi.org/10.1039/c3sc51930a org/10.1002/9780470089941.et0905s07
24. Loo Y, Wong Y C, Cai E Z, et al., 2014, Ultrashort peptide 35. Bajaj P, Reddy B Jr, Millet L, et al., 2011, Patterning the
nanofibrous hydrogels for the acceleration of healing of burn differentiation of C2C12 skeletal myoblasts. RSC, 3(9):897–
wounds. Biomaterials, 35(17): 4805–4814. http://dx.doi. 909. http://dx.doi.org/10.1039/c1ib00058f
org/10.1016/j.biomaterials.2014.02. 047 36. Matthew D S, Ronald T R, 2010, Collagen structure and
25. Kroehne V, Heschel I, Schügner F, et al., 2008, Use of stability. Annu Rev Biochem, 78: 929–958. https://doi.
a novel collagen matrix with oriented pore structure for org/10.1146/annurev.biochem.77.032207.120833
muscle cell differentiation in cell culture and in grafts. J Cell 37. Shadrin I Y, Khodabukus A, Bursac N, 2016, Striated muscle
Mol Med, 12(5a): 1640–1648. http://dx.doi.org/10.1111/ function, regeneration, and repair cell. Mol Life Sci, 73(22):
j.15824934.2008.00238.x 4175–4202. http://dx.doi.org/10.1007/s00018-016-2285-z
26. Kang H W, Lee S J, Ko I K, et al., 2016, A 3D bioprinting 38. Fuoco C, Petrilli L, Cannata S, et al., 2016, Matrix
system to produce human-scale tissue constructs with scaffolding for stem cell guidance toward skeletal muscle
structural integrity. Nat Biotechnol, 34(3): 312–319. http:// tissue engineering, J Orthop Surg Res, 11: 86. http://dx.doi.
dx.doi.org/10.1038/nbt.3413 org/10.1186/s13018-016-0421-y
27. Chen S, Nakamoto T, Kawazoe N, et al., 2015, Engineering 39. Fuoco C, Cannata S, Gargioli C, 2016, Could a functional
multi-layered skeletal muscle tissue by using 3D micro- artificial skeletal muscle be useful in muscle wasting? Curr
grooved collagen scaffolds. Biomaterials, 73: 23–31. http:// Opin Clin Nutr Metab Care, 19(3): 182– 187. http://dx.doi.
dx.doi.org/10.1016/j.biomaterials.2015.09.010 org/10.1097/MCO.0000000000000 271
28. Jana S, Cooper A, Zhang M, 2013, Chitosan scaffolds with 40. Mironov V, Kasyanov V, Drake C, et al., 2008, Organ
unidirectional microtubular pores for large skeletal myotube printing: Promises and challenges. Regen Med, 3(1): 93–103.
generation. Adv Healthc Mater, 2(4): 557–561. https:// http://dx.doi.org/10.2217/17460751.3.1.93
dx.doi.org/10.1002/adhm.201200177 41. Choi Y J, Kim T G, Jeong J, et al., 2016, 3D cell printing of
29. Jana S, Levengood S K L, Zhang M, 2016, Anisotropic functional skeletal muscle constructs using skeletal muscle
International Journal of Bioprinting (2018)–Volume 4, Issue 2 11

