Page 76 - IJB-4-2
P. 76

Arab W, et al.

           18.  Hauser C A, Zhang, 2010, Designer self-assembling peptide   materials for skeletal-muscle-tissue engineering. Adv
               nanofiber biological materials, 2010,  Chem Soc Rev, 39(8):   Mater, 28(48): 10588–10612. http://dx.doi.org/10.10 02/
               2780–2790. http://dx.doi.org/10.1039/B921448H      adma.201600240
           19.  Loo Y, Zhang S, Hauser C A, 2012, From short peptides to   30.  Koning M, Harmsen M C, Van Luyn M J A, et al., 2009,
               nanofibers to macromolecular assemblies in biomedicine.   Current opportunities and challenges in skeletal muscle
               Biotechnol Advs, 30(3): 593–603. http://dx.doi.org/10.1016/  tissue engineering. J Tissue Eng Regen Med, 3(6): 407–415.
               j.biotechadv.2011.10.004                           http://dx.doi.org/10.1002/term.190
           20.  Wu E C, Zhang S G, Hauser C A E, 2012, Self-assembling   31.  Bian W, Bursac N, 2008, Tissue engineering of functional
               peptides as cell-interactive scaffolds. Adv Funct Mater,   skeletal muscle: Challenges and recent advances. IEEE Eng
               22(3): 456–468. http://dx.doi.org/10.1002/adfm.201101905    Med Biol Mag, 27(5): 109–113. http://dx.doi.org/10.1109/
           21.  Hauser C A, Deng R, Mishra A, et al., 2011, Natural tri- to   MEMB.2008.928460
               hexapeptides self-assemble in water to amyloid β-type fiber   32.  Pollot B E, Rathbone C R, Wenke J C, et al., 2017, Natural
               aggregates by unexpected α-helical intermediate structures.   polymeric hydrogel evaluation for skeletal muscle tissue
               Proceed Natl Acad Sci, 108(4): 1361–1366. http://dx.doi.  engineering. J Biomed Mater Res B Appl Biomater. http://
               org/10.1073/pnas.1014796108                        dx.doi.org/10.1002/jbm.b.33859
           22.  Mishra A, Loo Y, Deng R, et al., 2011, Ultrasmall natural   33.  Loo Y, Lakshmanan A, Ni M, et al., 2015, Peptide bioink:
               peptides self-assemble to strong temperature-resistant   Self-assembling nanofibrous scaffolds for three-dimensional
               helical fibers in scaffolds suitable for tissue engineering.   organotypic cultures. Nano Lett, 15(10): 6919–6925. http://
               Nano Today, 6: 232–239. http://dx.doi.org/10.1016/  dx.doi.org/10.1021/acs.nanolett.5b02859
               j.nantod.2011.05.001                            34.  Taylor S E, Cao T, Talauliker P M, et al., 2013, Objective
           23.  Reithofer M R, Chan K H, Lakshmanan A, et al., 2014,   morphological quantification of microscopic images
               Ligation of anti-cancer drugs to selfassembling ultrashort   using a fast fourier transform (FFT) analysis.  Curr
               peptides by click chemistry for localized therapy. Chem Sci,   Protoc Essent Lab Tech, 7(1):9.5.1–9.5.12. http://dx.doi.
               5: 625–630. https://dx.doi.org/10.1039/c3sc51930a  org/10.1002/9780470089941.et0905s07
           24.  Loo Y, Wong Y C, Cai E Z, et al., 2014, Ultrashort peptide   35.  Bajaj P, Reddy B Jr, Millet L, et al., 2011, Patterning the
               nanofibrous hydrogels for the acceleration of healing of burn   differentiation of C2C12 skeletal myoblasts. RSC, 3(9):897–
               wounds. Biomaterials, 35(17): 4805–4814. http://dx.doi.  909. http://dx.doi.org/10.1039/c1ib00058f
               org/10.1016/j.biomaterials.2014.02. 047         36.  Matthew D S, Ronald T R, 2010, Collagen structure and
           25.  Kroehne V, Heschel I, Schügner F, et al., 2008, Use of   stability. Annu Rev Biochem, 78: 929–958. https://doi.
               a novel collagen matrix with oriented pore structure for   org/10.1146/annurev.biochem.77.032207.120833
               muscle cell differentiation in cell culture and in grafts. J Cell   37.  Shadrin I Y, Khodabukus A, Bursac N, 2016, Striated muscle
               Mol Med, 12(5a): 1640–1648. http://dx.doi.org/10.1111/  function, regeneration, and repair cell. Mol Life Sci, 73(22):
               j.15824934.2008.00238.x                            4175–4202. http://dx.doi.org/10.1007/s00018-016-2285-z
           26.  Kang H W, Lee S J, Ko I K, et al., 2016, A 3D bioprinting   38.  Fuoco C, Petrilli L, Cannata S, et al., 2016, Matrix
               system to produce human-scale tissue constructs with   scaffolding for stem cell guidance toward skeletal muscle
               structural integrity. Nat Biotechnol, 34(3): 312–319. http://  tissue engineering, J Orthop Surg Res, 11: 86. http://dx.doi.
               dx.doi.org/10.1038/nbt.3413                        org/10.1186/s13018-016-0421-y
           27.  Chen S, Nakamoto T, Kawazoe N, et al., 2015, Engineering   39.  Fuoco C, Cannata S, Gargioli C, 2016, Could a functional
               multi-layered skeletal muscle tissue by using 3D micro-  artificial skeletal muscle be useful in muscle wasting? Curr
               grooved collagen scaffolds. Biomaterials, 73: 23–31. http://  Opin Clin Nutr Metab Care, 19(3): 182– 187. http://dx.doi.
               dx.doi.org/10.1016/j.biomaterials.2015.09.010      org/10.1097/MCO.0000000000000 271
           28.  Jana S, Cooper A, Zhang M, 2013, Chitosan scaffolds with   40.  Mironov V, Kasyanov V, Drake C, et al., 2008, Organ
               unidirectional microtubular pores for large skeletal myotube   printing: Promises and challenges. Regen Med, 3(1): 93–103.
               generation. Adv Healthc Mater, 2(4): 557–561. https://  http://dx.doi.org/10.2217/17460751.3.1.93
               dx.doi.org/10.1002/adhm.201200177               41.  Choi Y J, Kim T G, Jeong J, et al., 2016, 3D cell printing of
           29.  Jana S, Levengood S K L, Zhang M, 2016, Anisotropic   functional skeletal muscle constructs using skeletal muscle

                                       International Journal of Bioprinting (2018)–Volume 4, Issue 2        11
   71   72   73   74   75   76   77   78   79   80   81