Page 211 - IJB-10-4
P. 211
International Journal of Bioprinting Horsetail-inspired lattice for bone use
properties and multiscale optimization. Int J Mech Sci. doi: 10.1016/j.addma.2022.102684
2023;244. 30. Li X, Zhao M, Yu X, et al. Multifunctional and customizable
doi: 10.1016/j.ijmecsci.2022.108092
lattice structures for simultaneous sound insulation and
19. Li X, Yu X, Chua JW, Lee HP, Ding J, Zhai W. Microlattice structural applications. Mater Des. 2023:112354.
metamaterials with simultaneous superior acoustic and doi: 10.1016/j.matdes.2023.112354
mechanical energy absorption. Small. 2021;17(24):2100336.
doi: 10.1002/smll.202100336 31. Li J, Qin L, Yang K, et al. Materials evolution of bone plates
for internal fixation of bone fractures: a review. J Mater Sci
20. Fratzl P. Biomimetic materials research: what can we really Technol. 2020;36:190-208.
learn from nature’s structural materials? J R Soc Interface. doi: 10.1016/j.jmst.2019.07.024
2007;4(15):637-642.
doi: 10.1098/rsif.2007.0218 32. Falkowska A, Seweryn A, Skrodzki M. Strength properties
of a porous titanium alloy Ti6Al4V with diamond structure
21. Siddique SH, Hazell PJ, Wang H, Escobedo JP, Ameri obtained by laser power bed fusion (LPBF). Materials.
AAH. Lessons from nature: 3D printed bio-inspired porous 2020;13(22):5138.
structures for impact energy absorption – a review. Addit doi: 10.3390/ma13225138
Manuf. 2022;58.
doi: 10.1016/j.addma.2022.103051 33. Lempert GD, Tsour A. Reduction of static friction between
surfaces of Ti-6Al-4V and between surfaces of Ti-6Al-4V
22. Li Z, Yang H, Li P, Liu J, Wang J, Xu Y. Fruit biomechanics and Al-7075. Surf Coat Technol. 1992;52(3):291-295.
based on anatomy: a review. Int Agrophys. 2013;27(1): doi: 10.1016/0257-8972(92)90029-A
97-106.
doi: 10.2478/v10247-012-0073-z 34. Chai G, Manikandan P, Li X. A numerical study on high
velocity impact behavior of titanium based fiber metal
23. Tancogne-Dejean T, Mohr D. Elastically-isotropic truss laminates. J Compos Sci. 2018;2(4):62.
lattice materials of reduced plastic anisotropy. Int J Solids doi: 10.3390/jcs2040062
Struct. 2018;138:24-39.
doi: 10.1016/j.ijsolstr.2017.12.025 35. Goldstein SA. The mechanical properties of trabecular bone:
dependence on anatomic location and function. J Biomech.
24. Li X, Tan YH, Wang P, Su X, Willy HJ, Herng TS, et al. 1987;20(11-12):1055-1061.
Metallic microlattice and epoxy interpenetrating phase doi: 10.1016/0021-9290(87)90023-6
composites: experimental and simulation studies on superior
mechanical properties and their mechanisms. Compos Part 36. Jae Young R, Richard BA, Charles HT. Young’s modulus
A Appl Sci Manuf. 2020;135:105934. of trabecular and cortical bone material: ultrasonic and
doi: 10.1016/j.compositesa.2020.105934 microtensile measurements. J Biomech. 1993;26(2):
111-119.
25. Yu T, Li X, Zhao M, et al. Truss and plate hybrid lattice doi: 10.1016/0021-9290(93)90042-D
structures: simulation and experimental investigations of
isotropy, large-strain deformation, and mechanisms. Mater 37. Murphy CM, O’Brien FJ. Understanding the effect of mean
Today Commun. 2023:106344. pore size on cell activity in collagen-glycosaminoglycan
doi: 10.1016/j.mtcomm.2023.106344 scaffolds. Cell Adh Migr. 2010;4(3):377-381.
doi: 10.4161/cam.4.3.11747
26. Ferng Y-M, Lin K-Y. Investigating effects of BCC and FCC
arrangements on flow and heat transfer characteristics 38. Ashby MF. The properties of foams and lattices. Phil Trans R
in pebbles through CFD methodology. Nucl Eng Des. Soc. 2006;364(1838):15-30.
2013;258:66-75. doi: 10.1098/rsta.2005.1678
doi: 10.1016/j.nucengdes.2013.02.009 39. Deshpande VS, Ashby MF, Fleck NA. Foam topology:
27. Zhao M, Li X, Zhang DZ, Zhai W. Design, mechanical bending versus stretching dominated architectures. Acta
properties and optimization of lattice structures with hollow Mater. 2001;49(6):1035-1040.
prismatic struts. Int J Mech Sci. 2023;238. doi: 10.1016/S1359-6454(00)00379-7
doi: 10.1016/j.ijmecsci.2022.107842 40. Perez RA, Mestres G. Role of pore size and morphology
28. Zhou J, Xiong S, Liu M, et al. Study on the influence in musculo-skeletal tissue regeneration. Mater Sci Eng C.
of scaffold morphology and structure on osteogenic 2016;61:922-939.
performance. Front Bioeng Biotechnol. 2023;11. doi: 10.1016/j.msec.2015.12.087
doi: 10.3389/fbioe.2023.1127162
41. Foster AL, Moriarty TF, Zalavras C, et al. The influence
29. Kolken HMA, Callens S, Leeflang M, Mirzaali MJ, Zadpoor of biomechanical stability on bone healing and fracture-
A. Merging strut-based and minimal surface meta- related infection: the legacy of Stephan Perren. Injury.
biomaterials: decoupling surface area from mechanical 2021;52(1):43-52.
properties. Addit Manuf. 2022;52:102684. doi: 10.1016/j.injury.2020.06.044
Volume 10 Issue 4 (2024) 203 doi: 10.36922/ijb.2326

