Page 210 - IJB-10-4
P. 210
International Journal of Bioprinting Horsetail-inspired lattice for bone use
Data curation: Seng Leong Adrian Tan implant application. Mater Des. 2021;203:109595.
Formal analysis: Seng Leong Adrian Tan doi: 10.1016/j.matdes.2021.109595
Funding acquisition: Wei Zhai 8. Jianfeng K, Enchun D, Dichen L, Shuangpeng D, Chen Z,
Investigation: Seng Leong Adrian Tan, Xinwei Li Ling W. Anisotropy characteristics of microstructures for
Methodology: Seng Leong Adrian Tan, Miao Zhao bone substitutes and porous implants with application of
Project administration: Wei Zhai additive manufacturing in orthopaedic. Mater Des. 2020;
Resources: Zhendong Li, Zhonggang Wang, Xinwei Li, 191:108608.
Wei Zhai doi: 10.1016/j.matdes.2020.108608
Supervision: Miao Zhao, Xinwei Li, Wei Zhai 9. Marie-Michèle G, Sofiane B, Sofiane G, Rémi D, Pierre C,
Validation: Miao Zhao, Xinwei Li Pierre W. Additive manufacturing of biomaterials for bone
Writing – original draft: Seng Leong Adrian Tan tissue engineering – a critical review of the state of the art
Writing – review & editing: Xinwei Li and new concepts. Prog Mater Sci. 2022;130:100963.
doi: 10.1016/j.pmatsci.2022.100963
Ethics approval and consent to participate 10. Zhang X, Leary M, Tang H, Song T, Qian M. Selective
Not applicable. electron beam manufactured Ti-6Al-4V lattice structures
for orthopedic implant applications: current status and
Consent for publication outstanding challenges. Curr Opin Solid State Mater Sci.
2018;22(3):75-99.
Not applicable. doi: 10.1016/j.cossms.2018.05.002
11. Bobbert F, Lietaert K, Eftekhari AA, et al. Additively
Availability of data manufactured metallic porous biomaterials based on minimal
All relevant data are within the manuscript. surfaces: a unique combination of topological, mechanical, and
mass transport properties. Acta Biomater. 2017;53:572-584.
doi: 10.1016/j.actbio.2017.02.024
References
12. Alabort E, Barba D, Reed RC. Design of metallic bone by
1. Corrado A, Cici D, Rotondo C, Maruotti N, Cantatore FP. additive manufacturing. Scr Mater. 2019;164:110-114.
Molecular basis of bone aging. Int J Mol Sci. 2020;21(10):3679. doi: 10.1016/j.scriptamat.2019.01.022
doi: 10.3390/ijms21103679 13. Chernyshikhin SV, Mahato B, Shiverskii AV, et al. In-plane
2. Wu A-M, Bisignano C, James SL, et al. Global, regional, measurements and computational fluid dynamics prediction
and national burden of bone fractures in 204 countries and of permeability for biocompatible NiTi gyroid scaffolds
territories, 1990–2019: a systematic analysis from the Global fabricated via laser powder bed fusion. Int J Bioprint.
Burden of Disease Study 2019. Lancet Healthy Longev. 2024;10(1):0119.
2021;2(9):e580-e592. doi: 10.36922/ijb.0119
doi: 10.1016/s2666-7568(21)00172-0 14. Zhu H, Lin Z, Luan Q, et al. Angiogenesis-promoting composite
3. Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue TPMS bone tissue engineering scaffold for mandibular defect
engineering: recent advances and challenges. Crit Rev regeneration. Int J Bioprint. 2024;10(1):0153.
Biomed Eng. 2012;40(5):363-408. doi: 10.36922/ijb.0153
doi: 10.1615/critrevbiomedeng.v40.i5.10 15. Noroozi R, Tatar F, Zolfagharian A, et al. Additively
4. Dec P, Modrzejewski A, Pawlik A. Existing and novel manufactured multi-morphology bone-like porous scaffolds:
biomaterials for bone tissue engineering. Int J Mol Sci. experiments and micro-computed tomography-based finite
2022;24(1):529. element modeling approaches. Int J Bioprint. 2022;8(3).
doi: 10.3390/ijms24010529 doi: 10.18063/ijb.v8i3.556
5. Wang X, Xu S, Zhou S, et al. Topological design and additive 16. Lijun X, Xiao X, Genzhu F, Shi L, Weidong S, Zhaoxiu
manufacturing of porous metals for bone scaffolds and J. Compressive performance and energy absorption of
orthopaedic implants: a review. Biomaterials. 2016;83:127-141. additively manufactured metallic hybrid lattice structures.
doi: 10.1016/j.biomaterials.2016.01.012 Int J Mech Sci. 2022;219:107093.
doi: 10.1016/j.ijmecsci.2022.107093
6. Lacroix D. Biomechanical aspects of bone repair. In: Josep
AP, Serena MB, Damien L, Antonio M, eds. Bone Repair 17. White BC, Garland A, Alberdi R, Boyce BL. Interpenetrating
Biomaterials. Sawston, Cambridge: Woodhead Publishing; lattices with enhanced mechanical functionality. Addit
2009:106-118.. Manuf. 2021;38.
doi: 10.1533/9781845696610.1.106 doi: 10.1016/j.addma.2020.101741
7. Jiawei F, Bo L, Zhiwei L, Jianzhong F. Isotropic octet-truss 18. Zhao M, Li X, Zhang DZ, Zhai W. TPMS-based
lattice structure design and anisotropy control strategies for interpenetrating lattice structures: design, mechanical
Volume 10 Issue 4 (2024) 202 doi: 10.36922/ijb.2326

