Page 210 - IJB-10-4
P. 210

International Journal of Bioprinting                                   Horsetail-inspired lattice for bone use




            Data curation: Seng Leong Adrian Tan                  implant application. Mater Des. 2021;203:109595.
            Formal analysis: Seng Leong Adrian Tan                doi: 10.1016/j.matdes.2021.109595
            Funding acquisition: Wei Zhai                      8.   Jianfeng K, Enchun D, Dichen L, Shuangpeng D, Chen Z,
            Investigation: Seng Leong Adrian Tan, Xinwei Li       Ling W. Anisotropy characteristics of microstructures for
            Methodology: Seng Leong Adrian Tan, Miao Zhao         bone substitutes and porous implants with application of
            Project administration: Wei Zhai                      additive  manufacturing  in  orthopaedic.  Mater Des.  2020;
            Resources: Zhendong Li, Zhonggang Wang, Xinwei Li,    191:108608.
               Wei Zhai                                           doi: 10.1016/j.matdes.2020.108608
            Supervision: Miao Zhao, Xinwei Li, Wei Zhai        9.   Marie-Michèle G, Sofiane B, Sofiane G, Rémi D, Pierre C,
            Validation: Miao Zhao, Xinwei Li                      Pierre W. Additive manufacturing of biomaterials for bone
            Writing – original draft: Seng Leong Adrian Tan       tissue engineering – a critical review of the state of the art
            Writing – review & editing: Xinwei Li                 and new concepts. Prog Mater Sci. 2022;130:100963.
                                                                  doi: 10.1016/j.pmatsci.2022.100963
            Ethics approval and consent to participate         10.  Zhang X, Leary M, Tang H, Song T, Qian M. Selective
            Not applicable.                                       electron beam manufactured Ti-6Al-4V lattice structures
                                                                  for orthopedic implant applications: current status and
            Consent for publication                               outstanding challenges.  Curr Opin Solid State Mater Sci.
                                                                  2018;22(3):75-99.
            Not applicable.                                       doi: 10.1016/j.cossms.2018.05.002
                                                               11.  Bobbert F, Lietaert K, Eftekhari AA, et al. Additively
            Availability of data                                  manufactured metallic porous biomaterials based on minimal

            All relevant data are within the manuscript.          surfaces: a unique combination of topological, mechanical, and
                                                                  mass transport properties. Acta Biomater. 2017;53:572-584.
                                                                  doi: 10.1016/j.actbio.2017.02.024
            References
                                                               12.  Alabort E, Barba D, Reed RC. Design of metallic bone by
            1.   Corrado A, Cici D, Rotondo C, Maruotti N, Cantatore FP.   additive manufacturing. Scr Mater. 2019;164:110-114.
               Molecular basis of bone aging. Int J Mol Sci. 2020;21(10):3679.      doi: 10.1016/j.scriptamat.2019.01.022
               doi: 10.3390/ijms21103679                       13.  Chernyshikhin SV, Mahato B, Shiverskii AV, et al. In-plane
            2.   Wu A-M, Bisignano C, James SL, et al. Global, regional,   measurements and computational fluid dynamics prediction
               and national burden of bone fractures in 204 countries and   of permeability for biocompatible NiTi gyroid scaffolds
               territories, 1990–2019: a systematic analysis from the Global   fabricated via laser powder bed fusion.  Int J Bioprint.
               Burden of Disease Study 2019.  Lancet Healthy Longev.   2024;10(1):0119.
               2021;2(9):e580-e592.                               doi: 10.36922/ijb.0119
               doi: 10.1016/s2666-7568(21)00172-0              14.  Zhu H, Lin Z, Luan Q, et al. Angiogenesis-promoting composite
            3.   Amini  AR, Laurencin  CT, Nukavarapu SP. Bone  tissue   TPMS bone tissue engineering scaffold for mandibular defect
               engineering: recent advances and challenges.  Crit Rev   regeneration. Int J Bioprint. 2024;10(1):0153.
               Biomed Eng. 2012;40(5):363-408.                    doi: 10.36922/ijb.0153
               doi: 10.1615/critrevbiomedeng.v40.i5.10         15.  Noroozi R, Tatar F, Zolfagharian A, et al. Additively
            4.   Dec P, Modrzejewski A, Pawlik A. Existing and novel   manufactured multi-morphology bone-like porous scaffolds:
               biomaterials  for  bone  tissue  engineering.  Int J Mol Sci.   experiments and micro-computed tomography-based finite
               2022;24(1):529.                                    element modeling approaches. Int J Bioprint. 2022;8(3).
               doi: 10.3390/ijms24010529                          doi: 10.18063/ijb.v8i3.556
            5.   Wang X, Xu S, Zhou S, et al. Topological design and additive   16.  Lijun  X,  Xiao  X,  Genzhu  F,  Shi  L,  Weidong  S,  Zhaoxiu
               manufacturing of porous metals for bone scaffolds and   J. Compressive performance and energy absorption of
               orthopaedic implants: a review. Biomaterials. 2016;83:127-141.  additively manufactured metallic hybrid lattice structures.
               doi: 10.1016/j.biomaterials.2016.01.012            Int J Mech Sci. 2022;219:107093.
                                                                  doi: 10.1016/j.ijmecsci.2022.107093
            6.   Lacroix D. Biomechanical aspects of bone repair. In: Josep
               AP, Serena MB, Damien L, Antonio M, eds.  Bone Repair   17.  White BC, Garland A, Alberdi R, Boyce BL. Interpenetrating
               Biomaterials. Sawston, Cambridge: Woodhead Publishing;   lattices with enhanced mechanical functionality.  Addit
               2009:106-118..                                     Manuf. 2021;38.
               doi: 10.1533/9781845696610.1.106                   doi: 10.1016/j.addma.2020.101741
            7.   Jiawei F, Bo L, Zhiwei L, Jianzhong F. Isotropic octet-truss   18.  Zhao M, Li X, Zhang DZ, Zhai W. TPMS-based
               lattice structure design and anisotropy control strategies for   interpenetrating lattice structures: design, mechanical

            Volume 10 Issue 4 (2024)                       202                                doi: 10.36922/ijb.2326
   205   206   207   208   209   210   211   212   213   214   215