Page 243 - IJB-10-4
P. 243
International Journal of Bioprinting N-PLN hydrogels for human skin modeling
for percutaneous absorption testing. Skin Pharmacol Physiol. 25. Zhang Q, Bei HP, Zhao M, Dong Z, Zhao X. Shedding light
2010;23(2):105-112. on 3D printing: Printing photo-crosslinkable constructs for
doi: 10.1159/000265681 tissue engineering. Biomaterials. 2022;286:121566.
doi: 10.1016/j.biomaterials.2022.121566
13. Zhang Y, Wang Y, Li Y, et al. Application of collagen-based
hydrogel in skin wound healing. Gels. 2023;9(3):185. 26. Yu C, Schimelman J, Wang P, et al. Photopolymerizable
doi: 10.3390/gels9030185 biomaterials and light-based 3D printing strategies
14. Zhu J, Marchant RE. Design properties of hydrogel for biomedical applications. Chem Rev. 2020;120(19):
tissue-engineering scaffolds. Expert Rev Med Devices. 10695-10743.
2011;8(5):607-626. doi: 10.1021/acs.chemrev.9b00810
doi: 10.1586/erd.11.27 27. Torras N, Zabalo J, Abril E, Carré A, García-Díaz M, Martínez
15. Sun M, Sun X, Wang Z, Guo S, Yu G, Yang H. Synthesis and E. A bioprinted 3D gut model with crypt-villus structures to
properties of gelatin methacryloyl (GelMA) hydrogels and mimic the intestinal epithelial-stromal microenvironment.
their recent applications in load-bearing tissue. Polymers Biomater Adv. 2023;153:213534.
(Basel). 2018;10(11):1290. doi: 10.1016/j.bioadv.2023.213534
doi: 10.3390/polym10111290 28. Lin CC, Raza A, Shih H. PEG hydrogels formed by thiol-ene
16. Yegappan R, Selvaprithiviraj V, Amirthalingam S, Jayakumar photo-click chemistry and their effect on the formation and
R. Carrageenan based hydrogels for drug delivery, tissue recovery of insulin-secreting cell spheroids. Biomaterials.
engineering and wound healing. Carbohydr Polym. 2011;32(36):9685-9695.
2018;198:385-400. doi: 10.1016/j.biomaterials.2011.08.083
doi: 10.1016/j.carbpol.2018.06.086 29. McCall JD, Anseth KS. Thiol–ene photopolymerizations
17. Park D, Kim Y, Kim H, et al. Hyaluronic acid promotes provide a facile method to encapsulate proteins and maintain
angiogenesis by inducing RHAMM-TGFβ receptor their bioactivity. Biomacromolecules. 2012;13(8):2410-2417.
interaction via CD44-PKCδ. Mol Cells. 2012;33(6):563-574. doi: 10.1021/bm300671s
doi: 10.1007/s10059-012-2294-1 30. Fairbanks BD, Schwartz MP, Halevi AE. A Versatile
18. Toole BP. Hyaluronan: from extracellular glue to pericellular Synthetic Extracellular Matrix Mimic via Thio-Norbornene
cue. Nat Rev Cancer. 2004;4(7):528-539. Photopolymerization. Adv Mater. 2009;21(48):5005-5010.
doi: 10.1038/nrc1391 doi: 10.1002/adma.200901808
19. Gobi R, Ravichandiran P, Babu RS, Yoo DJ. Biopolymer and 31. Lin CC, Ki CS, Shih H. Thiol-norbornene photoclick
synthetic polymer-based nanocomposites in wound dressing hydrogels for tissue engineering applications. J Appl Polym
applications: a review. Polymers (Basel). 2021;13(12):1962. Sci. 2015;132(8):1-11.
doi: 10.3390/polym13121962 doi: 10.1002/app.41563
20. Li R, Tomasula P, de Sousa AMM, et al. Electrospinning 32. Van Hoorick J, Dobos A, Markovic M, et al. Thiol-
pullulan fibers from salt solutions. Polymers (Basel). norbornene gelatin hydrogels: Influence of thiolated
2017;9(1):32. crosslinker on network properties and high definition 3D
doi: 10.3390/polym9010032 printing. Biofabrication. 2020;13(1): 1-22.
doi: 10.1088/1758-5090/abc95f
21. Leathers TD. Biotechnological production and applications
of pullulan. Appl Microbiol Biotechnol. 2003;62(5-6): 33. Anseth KS, Bowman CN, Brannon-Peppas L. Mechanical
468-473. properties of hydrogels and their experimental
doi: 10.1007/s00253-003-1386-4 determination. Biomaterials. 1996;17(17):1647-1657.
doi: 10.1016/0142-9612(96)87644-7
22. Cheng N, Jeschke MG, Sheikholeslam M, Datu A, Oh HH,
Amini‐Nik S. Promotion of dermal regeneration using 34. Vila A, Torras N, Castaño AG, et al. Hydrogel co-
pullulan/gelatin porous skin substitute. J Tissue Eng Regen networks of gelatine methacrylate and poly(ethylene glycol)
Med. 2019;13(11):1965-1977. diacrylate sustain 3D functional in vitro models of intestinal
doi: 10.1002/term.2946 mucosa. Biofabrication. 2020;12(2):025008.
doi: 10.1088/1758-5090/ab5f50
23. Wang Y, Yuan X, Yao B, Zhu S, Zhu P, Huang S. Tailoring
bioinks of extrusion-based bioprinting for cutaneous wound 35. Nguyen AL, Grothe S, Luong JHT. Applications of pullulan
healing. Bioact Mater. 2022;17:178-194. in aqueous two-phase systems for enzyme production,
doi: 10.1016/j.bioactmat.2022.01.024 purification and utilization. Appl Microbiol Biotechnol.
1988:27;341-346.
24. Antezana PE, Municoy S, Álvarez-Echazú MI, et al. The
3D bioprinted scaffolds for wound healing. Pharmaceutics. doi: 10.1007/BF00251765
2022;14(2):464. 36. Singh RS, Kaur N, Singh D, Kennedy JF. Investigating
doi: 10.3390/pharmaceutics14020464 aqueous phase separation of pullulan from Aureobasidium
Volume 10 Issue 4 (2024) 235 doi: 10.36922/ijb.3395

