Page 571 - IJB-10-4
P. 571
International Journal of Bioprinting Light-based muscle bioprinting with bioglass
22. Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, strength and gel network structure. Polymers (Basel).
Annabi N, Khademhosseini A. Synthesis, properties, and 2021;13(6):845.
biomedical applications of gelatin methacryloyl (GelMA) doi: 10.3390/polym13060845
hydrogels. Biomaterials. 2015;73:254-271.
doi: 10.1016/j.biomaterials.2015.08.045 34. Vigata M, Meinert C, Bock N, Dargaville BL, Hutmacher
DW. Deciphering the molecular mechanism of water
23. Jones JR. Review of bioactive glass: from Hench to hybrids. interaction with gelatin methacryloyl hydrogels: role of
Acta Biomater. 2013;9(1):4457-4486. ionic strength, ph, drug loading and hydrogel network
doi: 10.1016/j.actbio.2012.08.023 characteristics. Biomedicines. 2021;9(5):574.
24. El-Fiqi A, Kim TH, Kim M, et al. Capacity of mesoporous doi: 10.3390/biomedicines9050574
bioactive glass nanoparticles to deliver therapeutic 35. Pérez Cortez JE, Sánchez-Rodríguez VH, Vázquez E,
molecules. Nanoscale. 2012;4(23):7475-7488. Trujillo-de Santiago G, Alvarez MM, Martínez-López JI.
doi: 10.1039/C2NR31775C Retrofitting of an affordable 3D printer: towards a material
25. El-Rashidy A, Roether J, Harhaus L, Kneser U, Boccaccini efficient and low-cost bioprinting system. Procedia CIRP.
AR. Regenerating bone with bioactive glass scaffolds: 2022;110:150-155.
a review of in vivo studies in bone defect models. Acta doi: 10.1016/j.procir.2022.06.028
Biomater. 2017;62:1-28. 36. Pérez-Cortez JE, Sánchez-Rodríguez VH, Gallegos-
doi: 10.1016/j.actbio.2017.08.030 Martínez S, et al. Low-cost light-based GelMA 3D
26. Hasan A, Morshed M, Memic A, Hassan S, Webster TJ, Marei bioprinting via retrofitting: manufacturability test and
HES. Nanoparticles in tissue engineering: applications, cell culture assessment. Micromachines (Basel). 2022;
challenges and prospects. Int J Nanomedicine. 2018;13: 14(1):55.
5637-5655. doi: 10.3390/mi14010055
doi: 10.2147/IJN.S153758 37. Font Tellado S, Balmayor ER, Van Griensven M. Strategies to
27. Chen QZ, Thompson ID, Boccaccini AR. 45S5 Bioglass®- engineer tendon/ligament-to-bone interface: biomaterials,
derived glass–ceramic scaffolds for bone tissue engineering. cells and growth factors. Adv Drug Deliv Rev. 2015;
Biomaterials. 2006;27(11):2414-2425. 94:126-140.
doi: 10.1016/j.biomaterials.2005.11.025 doi: 10.1016/j.addr.2015.03.004
28. Jia W, Hu H, Li A, et al. Glass-activated regeneration of 38. Gao L, Zhou Y, Peng J, et al. A novel dual-adhesive and
volumetric muscle loss. Acta Biomater. 2020;103:306-317. bioactive hydrogel activated by bioglass for wound healing.
doi: 10.1016/j.actbio.2019.12.007 NPG Asia Mater. 2019;11(1):66.
doi: 10.1038/s41427-019-0168-0
29. Ege D, Nawaz Q, Beltrán AM, Boccaccini AR. Effect of
boron-doped mesoporous bioactive glass nanoparticles 39. Zöllner AM, Abilez OJ, Böl M, Kuhl E. Stretching
on c2c12 cell viability and differentiation: potential for skeletal muscle: chronic muscle lengthening
muscle tissue application. ACS Biomater Sci Eng. 2022;8(12): through sarcomerogenesis. PLoS One. 2012;7(10):
5273-5283. e45661.
doi: 10.1021/acsbiomaterials.2c00876 doi: 10.1371/journal.pone.0045661
30. Winston DD, Li T, Lei B. Bioactive nanoglass regulating the 40. Vasita R. A review on extracellular matrix mimicking
myogenic differentiation and skeletal muscle regeneration. strategies for an artificial stem cell niche. Polym Rev.
Regenerative Biomater. 2023;10:rbad059. 2015;55(4):561-595.
doi: 10.1093/rb/rbad059 doi: 10.1080/15583724.2015.1040552
31. Rahaman MN, Day DE, Bal BS, et al. Bioactive glass in tissue 41. Yin H, Price F, Rudnicki MA. Satellite cells and the muscle
engineering. Acta Biomater. 2011;7(6):2355-2373. stem cell niche. Physiol Rev. 2013;93(1):23-67.
doi: 10.1016/j.actbio.2011.03.016 doi: 10.1152/physrev.00043.2011
32. Ceballos-González CF, Bolívar Monsalve EJ, Quevedo‐ 42. Relaix F, Zammit PS. Satellite cells are essential for skeletal
Moreno DA, et al. Plug‐and‐play multimaterial chaotic muscle regeneration: the cell on the edge returns centre
printing/bioprinting to produce radial and axial stage. Development. 2012;139(16):2845-2856.
micropatterns in hydrogel filaments. Adv Mater Technol. doi: 10.1242/dev.069088
2023;8(17):202202208. 43. Heinemeier KM, Schjerling P, Heinemeier J, Magnusson
doi: 10.1002/admt.202202208
SP, Kjaer M. Lack of tissue renewal in human adult
33. Yang X, Dargaville BL, Hutmacher DW. Elucidating the Achilles tendon is revealed by nuclear bomb 14C. FASEB J.
molecular mechanisms for the interaction of water with 2013;27(5):2074-2079.
polyethylene glycol-based hydrogels: influence of ionic doi: 10.1096/fj.12-225599
Volume 10 Issue 4 (2024) 563 doi: 10.36922/ijb.1830

