Page 571 - IJB-10-4
P. 571

International Journal of Bioprinting                              Light-based muscle bioprinting with bioglass




            22.  Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A,   strength and gel network structure.  Polymers (Basel).
               Annabi N, Khademhosseini A. Synthesis, properties, and   2021;13(6):845.
               biomedical applications of gelatin methacryloyl (GelMA)      doi: 10.3390/polym13060845
               hydrogels. Biomaterials. 2015;73:254-271.
               doi: 10.1016/j.biomaterials.2015.08.045         34.  Vigata M, Meinert C, Bock N, Dargaville BL, Hutmacher
                                                                  DW.  Deciphering the molecular mechanism of water
            23.  Jones JR. Review of bioactive glass: from Hench to hybrids.   interaction with gelatin methacryloyl hydrogels: role of
               Acta Biomater. 2013;9(1):4457-4486.                ionic strength, ph, drug loading and hydrogel network
               doi: 10.1016/j.actbio.2012.08.023                  characteristics. Biomedicines. 2021;9(5):574.
            24.  El-Fiqi A, Kim TH, Kim M, et al. Capacity of mesoporous      doi: 10.3390/biomedicines9050574
               bioactive glass nanoparticles to deliver therapeutic   35.  Pérez  Cortez JE,  Sánchez-Rodríguez  VH,  Vázquez  E,
               molecules. Nanoscale. 2012;4(23):7475-7488.        Trujillo-de Santiago G, Alvarez MM, Martínez-López JI.
               doi: 10.1039/C2NR31775C                            Retrofitting of an affordable 3D printer: towards a material
            25.  El-Rashidy A, Roether J, Harhaus L, Kneser U, Boccaccini   efficient and low-cost bioprinting system.  Procedia CIRP.
               AR. Regenerating bone with bioactive glass scaffolds:   2022;110:150-155.
               a review of in vivo studies in bone defect models.  Acta      doi: 10.1016/j.procir.2022.06.028
               Biomater. 2017;62:1-28.                         36.  Pérez-Cortez JE,  Sánchez-Rodríguez  VH,  Gallegos-
               doi: 10.1016/j.actbio.2017.08.030                  Martínez S, et al. Low-cost light-based GelMA 3D
            26.  Hasan A, Morshed M, Memic A, Hassan S, Webster TJ, Marei   bioprinting via retrofitting: manufacturability test and
               HES. Nanoparticles in tissue engineering: applications,   cell culture assessment.  Micromachines (Basel). 2022;
               challenges and prospects.  Int J Nanomedicine. 2018;13:   14(1):55.
               5637-5655.                                         doi: 10.3390/mi14010055
               doi: 10.2147/IJN.S153758                        37.  Font Tellado S, Balmayor ER, Van Griensven M. Strategies to
            27.  Chen QZ, Thompson ID, Boccaccini AR. 45S5 Bioglass®-  engineer tendon/ligament-to-bone interface: biomaterials,
               derived glass–ceramic scaffolds for bone tissue engineering.   cells and growth factors.  Adv Drug Deliv Rev. 2015;
               Biomaterials. 2006;27(11):2414-2425.               94:126-140.
               doi: 10.1016/j.biomaterials.2005.11.025            doi: 10.1016/j.addr.2015.03.004

            28.  Jia W, Hu H, Li A, et al. Glass-activated regeneration of   38.  Gao L, Zhou Y, Peng J, et al. A novel dual-adhesive and
               volumetric muscle loss. Acta Biomater. 2020;103:306-317.  bioactive hydrogel activated by bioglass for wound healing.
               doi: 10.1016/j.actbio.2019.12.007                  NPG Asia Mater. 2019;11(1):66.
                                                                  doi: 10.1038/s41427-019-0168-0
            29.  Ege D, Nawaz Q, Beltrán AM, Boccaccini AR. Effect of
               boron-doped mesoporous bioactive glass nanoparticles   39.  Zöllner AM, Abilez OJ, Böl M, Kuhl E. Stretching
               on  c2c12  cell  viability  and  differentiation:  potential  for   skeletal  muscle:  chronic  muscle  lengthening
               muscle tissue application. ACS Biomater Sci Eng. 2022;8(12):   through sarcomerogenesis.  PLoS  One. 2012;7(10):
               5273-5283.                                         e45661.
               doi: 10.1021/acsbiomaterials.2c00876               doi: 10.1371/journal.pone.0045661
            30.  Winston DD, Li T, Lei B. Bioactive nanoglass regulating the   40.  Vasita R. A review on extracellular matrix mimicking
               myogenic differentiation and skeletal muscle regeneration.   strategies for an artificial stem cell niche.  Polym Rev.
               Regenerative Biomater. 2023;10:rbad059.            2015;55(4):561-595.
               doi: 10.1093/rb/rbad059                            doi: 10.1080/15583724.2015.1040552
            31.  Rahaman MN, Day DE, Bal BS, et al. Bioactive glass in tissue   41.  Yin H, Price F, Rudnicki MA. Satellite cells and the muscle
               engineering. Acta Biomater. 2011;7(6):2355-2373.   stem cell niche. Physiol Rev. 2013;93(1):23-67.
               doi: 10.1016/j.actbio.2011.03.016                  doi: 10.1152/physrev.00043.2011
            32.  Ceballos-González CF, Bolívar Monsalve EJ, Quevedo‐  42.  Relaix F, Zammit PS. Satellite cells are essential for skeletal
               Moreno DA, et al.  Plug‐and‐play multimaterial chaotic   muscle regeneration: the cell on the edge returns centre
               printing/bioprinting to produce radial and axial   stage. Development. 2012;139(16):2845-2856.
               micropatterns  in  hydrogel  filaments.  Adv Mater Technol.      doi: 10.1242/dev.069088
               2023;8(17):202202208.                           43.  Heinemeier KM, Schjerling P, Heinemeier J, Magnusson
               doi: 10.1002/admt.202202208
                                                                  SP, Kjaer M. Lack of tissue renewal in human adult
            33.  Yang X, Dargaville  BL,  Hutmacher DW. Elucidating the   Achilles tendon is revealed by nuclear bomb 14C. FASEB J.
               molecular mechanisms for the interaction of water with   2013;27(5):2074-2079.
               polyethylene glycol-based hydrogels: influence of ionic      doi: 10.1096/fj.12-225599



            Volume 10 Issue 4 (2024)                       563                                doi: 10.36922/ijb.1830
   566   567   568   569   570   571   572   573   574   575   576