Page 570 - IJB-10-4
P. 570
International Journal of Bioprinting Light-based muscle bioprinting with bioglass
Availability of data 11. Samandari M, Quint J, Rodríguez-de la Rosa A, Sinha I,
Pourquié O, Tamayol A. Bioinks and bioprinting strategies
Data are contained within the article or supplementary file. for skeletal muscle tissue engineering. Adv Mater.
2022;34(12):2105883.
References doi: 10.1002/adma.202105883
1. Downing K, Prisby R, Varanasi V, Zhou J, Pan Z, Brotto M. 12. Nieto D, Marchal Corrales JA, Jorge de Mora A, Moroni
Old and new biomarkers for volumetric muscle loss. Curr L. Fundamentals of light-cell–polymer interactions in
Opin Pharmacol. 2021;59:61-69. photo-cross-linking based bioprinting. APL Bioeng.
doi: 10.1016/j.coph.2021.05.001 2020;4(4):041502.
doi: 10.1063/5.0022693
2. McFaline-Figueroa J, Schifino AG, Nichenko AS, et al.
Pharmaceutical agents for contractile-metabolic dysfunction 13. Ege D, Hasirci V. Is 3D printing promising for osteochondral
after volumetric muscle loss. Tissue Eng Part A. 2022; tissue regeneration? ACS Appl Bio Mater. 2023;6(4):
28(17-18):795-806. 1431-1444.
doi: 10.1089/ten.TEA.2022.0036 doi: 10.1021/acsabm.3c00093
3. Ahuja N, Awad K, Peper S, Brotto M, Varanasi V. Mini 14. Arcaute K, Mann B, Wicker R. Stereolithography of spatially
review: biomaterials in repair and regeneration of nerve controlled multi-material bioactive poly(ethylene glycol)
in a volumetric muscle loss. Neurosci Lett. 2021;762: scaffolds. Acta Biomater. 2010;6(3):1047-1054.
136145. doi: 10.1016/j.actbio.2009.08.017
doi: 10.1016/j.neulet.2021.136145 15. Yi S, Liu Q, Luo Z, et al. Micropore-forming gelatin
4. Tavares-Negrete JA, Pedroza-González SC, Frías-Sánchez methacryloyl (gelma) bioink toolbox 2.0: designable
AI, et al. Supplementation of GelMA with minimally tunability and adaptability for 3D bioprinting applications.
processed tissue promotes the formation of densely Small. 2022;18(25):e2106357.
packed skeletal-muscle-like tissues. ACS Biomater Sci Eng. doi: 10.1002/smll.202106357
2023;9(6):3462-3475. 16. Levato R, Dudaryeva O, Garciamendez-Mijares CE, et al.
doi: 10.1021/acsbiomaterials.2c01521 Light-based vat-polymerization bioprinting. Nature Reviews
5. Carnes ME, Pins GD. Skeletal muscle tissue engineering: Methods Primers. 2023;3(1):47.
biomaterials-based strategies for the treatment of volumetric doi: 10.1038/s43586-023-00231-0
muscle loss. Bioengineering (Basel). 2020;7(3):85. 17. Ying G, Jiang N, Yu C, Zhang YS. Three-dimensional
doi: 10.3390/bioengineering7030085 bioprinting of gelatin methacryloyl (GelMA). Bio-des
6. Frías-Sánchez AI, Quevedo-Moreno DA, Samandari M, et Manuf. 2018;1(4):215-224.
al. Biofabrication of muscle fibers enhanced with plant viral doi: 10.1007/s42242-018-0028-8
nanoparticles using surface chaotic flows. Biofabrication. 18. Mamidi N, Velasco Delgadillo RM, Barrera EV. Covalently
2021;13(3). functionalized carbon nano-onions integrated gelatin
doi: 10.1088/1758-5090/abd9d7 methacryloyl nanocomposite hydrogel containing
7. Bolívar-Monsalve EJ, Ceballos-González CF, Borrayo- γ-cyclodextrin as drug carrier for high-performance ph-
Montaño KI, et al. Continuous chaotic bioprinting triggered drug release. Pharmaceuticals (Basel).2021;14(4):291.
of skeletal muscle-like constructs. Bioprinting. 2021; doi: 10.3390/ph14040291
21:e00125. 19. Mamidi N, Villela Castrejón J, González-Ortiz A. Rational
doi: 10.1016/j.bprint.2020.e00125 design and engineering of carbon nano-onions reinforced
8. Bolívar-Monsalve EJ, Ceballos-González CF, Chávez- natural protein nanocomposite hydrogels for biomedical
Madero C, et al. One-step bioprinting of multi-channel applications. J Mech Behav Biomed Mater. 2020;104:
hydrogel filaments using chaotic advection: fabrication of 103696.
pre-vascularized muscle-like tissues. Adv Healthc Mater. doi: 10.1016/j.jmbbm.2020.103696
2022;11(24):e2200448. 20. Daly AC, Critchley SE, Rencsok EM, Kelly DJ. A comparison
doi: 10.1002/adhm.202200448 of different bioinks for 3D bioprinting of fibrocartilage and
9. Zhuang P, An J, Chua CK, Tan LP. Bioprinting of 3D in hyaline cartilage. Biofabrication. 2016;8(4):045002.
vitro skeletal muscle models: a review. Maters Design. doi: 10.1088/1758-5090/8/4/045002
2020;193:108794. 21. Pedroza-González SC, Rodriguez-Salvador M, Pérez-
doi: 10.1016/j.matdes.2020.108794
Benítez BE, Alvarez MM, Trujillo-de Santiago G. Bioinks for
10. Daly AC, Prendergast ME, Hughes AJ, Burdick JA. 3D bioprinting: a scientometric analysis of two decades of
Bioprinting for the biologist. Cell. 2021;184(1):18-32. progress. Int J Bioprint. 2021;7(2):333.
doi: 10.1016/j.cell.2020.12.002 doi: 10.18063/ijb.v7i2.337
Volume 10 Issue 4 (2024) 562 doi: 10.36922/ijb.1830

