Page 570 - IJB-10-4
P. 570

International Journal of Bioprinting                              Light-based muscle bioprinting with bioglass




            Availability of data                               11.  Samandari  M,  Quint  J,  Rodríguez-de  la  Rosa  A,  Sinha  I,
                                                                  Pourquié O, Tamayol A. Bioinks and bioprinting strategies
            Data are contained within the article or supplementary file.  for skeletal muscle tissue engineering.  Adv Mater.
                                                                  2022;34(12):2105883.
            References                                            doi: 10.1002/adma.202105883

            1.   Downing K, Prisby R, Varanasi V, Zhou J, Pan Z, Brotto M.   12.  Nieto D, Marchal Corrales JA, Jorge de Mora A, Moroni
               Old and new biomarkers for volumetric muscle loss. Curr   L. Fundamentals of light-cell–polymer interactions in
               Opin Pharmacol. 2021;59:61-69.                     photo-cross-linking based bioprinting.  APL  Bioeng.
               doi: 10.1016/j.coph.2021.05.001                    2020;4(4):041502.
                                                                  doi: 10.1063/5.0022693
            2.   McFaline-Figueroa J, Schifino AG, Nichenko AS, et al.
               Pharmaceutical agents for contractile-metabolic dysfunction   13.  Ege D, Hasirci V. Is 3D printing promising for osteochondral
               after volumetric muscle loss.  Tissue Eng Part A. 2022;   tissue regeneration?  ACS Appl Bio Mater. 2023;6(4):
               28(17-18):795-806.                                 1431-1444.
               doi: 10.1089/ten.TEA.2022.0036                     doi: 10.1021/acsabm.3c00093
            3.   Ahuja N, Awad K, Peper S, Brotto M, Varanasi V. Mini   14.  Arcaute K, Mann B, Wicker R. Stereolithography of spatially
               review: biomaterials in repair and regeneration of nerve   controlled multi-material bioactive  poly(ethylene glycol)
               in a volumetric muscle loss.  Neurosci Lett. 2021;762:   scaffolds. Acta Biomater. 2010;6(3):1047-1054.
               136145.                                            doi: 10.1016/j.actbio.2009.08.017
               doi: 10.1016/j.neulet.2021.136145               15.  Yi S, Liu Q, Luo Z, et al. Micropore-forming gelatin
            4.   Tavares-Negrete JA, Pedroza-González SC, Frías-Sánchez   methacryloyl (gelma) bioink toolbox 2.0: designable
               AI, et al. Supplementation of GelMA with minimally   tunability and adaptability for 3D bioprinting applications.
               processed tissue promotes the formation of densely   Small. 2022;18(25):e2106357.
               packed skeletal-muscle-like tissues. ACS Biomater Sci Eng.      doi: 10.1002/smll.202106357
               2023;9(6):3462-3475.                            16.  Levato R, Dudaryeva O, Garciamendez-Mijares CE, et al.
               doi: 10.1021/acsbiomaterials.2c01521               Light-based vat-polymerization bioprinting. Nature Reviews
            5.   Carnes ME, Pins GD. Skeletal muscle tissue engineering:   Methods Primers. 2023;3(1):47.
               biomaterials-based strategies for the treatment of volumetric      doi: 10.1038/s43586-023-00231-0
               muscle loss. Bioengineering (Basel). 2020;7(3):85.  17.  Ying G, Jiang N, Yu C, Zhang YS. Three-dimensional
               doi: 10.3390/bioengineering7030085                 bioprinting of gelatin methacryloyl (GelMA).  Bio-des
            6.   Frías-Sánchez AI, Quevedo-Moreno DA, Samandari M, et   Manuf. 2018;1(4):215-224.
               al. Biofabrication of muscle fibers enhanced with plant viral      doi: 10.1007/s42242-018-0028-8
               nanoparticles using surface chaotic flows.  Biofabrication.   18.  Mamidi N, Velasco Delgadillo RM, Barrera EV. Covalently
               2021;13(3).                                        functionalized  carbon  nano-onions integrated gelatin
               doi: 10.1088/1758-5090/abd9d7                      methacryloyl  nanocomposite  hydrogel  containing
            7.   Bolívar-Monsalve  EJ,  Ceballos-González  CF,  Borrayo-  γ-cyclodextrin  as drug  carrier for high-performance  ph-
               Montaño KI, et al. Continuous chaotic bioprinting   triggered drug release. Pharmaceuticals (Basel).2021;14(4):291.
               of skeletal muscle-like constructs.  Bioprinting. 2021;      doi: 10.3390/ph14040291
               21:e00125.                                      19.  Mamidi N, Villela Castrejón J, González-Ortiz A. Rational
               doi: 10.1016/j.bprint.2020.e00125                  design and engineering of carbon nano-onions reinforced
            8.   Bolívar-Monsalve EJ, Ceballos-González CF, Chávez-  natural protein nanocomposite hydrogels for biomedical
               Madero C, et al. One-step bioprinting of multi-channel   applications.  J Mech Behav Biomed Mater. 2020;104:
               hydrogel  filaments using chaotic  advection:  fabrication  of   103696.
               pre-vascularized muscle-like tissues.  Adv Healthc Mater.      doi: 10.1016/j.jmbbm.2020.103696
               2022;11(24):e2200448.                           20.  Daly AC, Critchley SE, Rencsok EM, Kelly DJ. A comparison
               doi: 10.1002/adhm.202200448                        of different bioinks for 3D bioprinting of fibrocartilage and
            9.   Zhuang  P, An  J, Chua CK,  Tan  LP. Bioprinting of  3D  in   hyaline cartilage. Biofabrication. 2016;8(4):045002.
               vitro skeletal muscle models: a review.  Maters Design.      doi: 10.1088/1758-5090/8/4/045002
               2020;193:108794.                                21.  Pedroza-González  SC, Rodriguez-Salvador M,  Pérez-
               doi: 10.1016/j.matdes.2020.108794
                                                                  Benítez BE, Alvarez MM, Trujillo-de Santiago G. Bioinks for
            10.  Daly AC, Prendergast ME, Hughes AJ, Burdick JA.   3D bioprinting: a scientometric analysis of two decades of
               Bioprinting for the biologist. Cell. 2021;184(1):18-32.  progress. Int J Bioprint. 2021;7(2):333.
               doi: 10.1016/j.cell.2020.12.002                    doi: 10.18063/ijb.v7i2.337



            Volume 10 Issue 4 (2024)                       562                                doi: 10.36922/ijb.1830
   565   566   567   568   569   570   571   572   573   574   575