Page 100 - IJB-5-1
P. 100

Gao and Zhou
           30.  Wang  X,  Xu  L,  Zheng  G  F,  et  al., 2012, Pulsed   microarrays by electrohydrodynamic jet printing. Anal Chem,
               electrohydrodynamic  printing of conductive  silver patterns   84(22): 10012–10018. https://doi.org/10.1021/ac302463p.
               on demand. Sci China Technol Sci, 55(6): 1603–1607. https://  40.  Wang K, Stark J P W, 2010, Direct fabrication of electrically
               doi.org/10.1007/s11431-012-4843-4.                  functional  microstructures by fully voltage–controlled
           31.  Rahman K,  Ali K, Muhammad N M,  et al., 2012a, Fine   electrohydrodynamic  jet  printing  of silver  nano–ink.  Appl
               resolution drop–on–demand electrohydrodynamic patterning   Phys A, 99(4): 763–766. https://doi.org/10.1007/s00339-010-
               of conductive silver tracks on glass substrate. Appl Phys A,   5701-5.
               111(2): 593–600. https://doi.org/10.1007/s00339-012-7267-x.  41.  Seong B,  Yoo H, Nguyen  V D,  et al., 2014, Metal–mesh
           32.  Kang J, Jang Y, Kim Y, et al., 2015, An Ag–grid/graphene   based  transparent  electrode  on  a  3–D curved  surface  by
               hybrid structure for large–scale, transparent, flexible heaters.   electrohydrodynamic  jet printing.  J Micromech Microeng,
               Nanoscale, 7(15): 6567–6573.  https://doi.org/10.1039/  24(9):  970021–970025.  https://doi.org/10.1088/0960-
               C4NR06984F.                                         1317/24/9/097002.
           33.  Rahman K, Khan A, Muhammad N M, et al., 2012b, Fine–  42.  Sullivan A C, Jayasinghe S N, 2007, Development of a direct
               resolution patterning of copper nanoparticles  through   three–dimensional biomicrofabrication concept based on
               electrohydrodynamic  jet printing. J Micromech Microeng,   electrospraying a custom made siloxane sol. Biomicrofluidics,
               22(6):  650121–650128.  https://doi.org/10.1088/0960-  1(3): 3410301–3410310. https://doi.org/10.1063/1.2766761.
               1317/22/6/065012.                               43.  Ahmad  Z,  Rasekh  M,  Edirisinghe  M,  2010,
           34.  Han  Y, Dong J, 2017, High–resolution direct printing of   Electrohydrodynamic direct writing of biomedical polymers
               molten–metal using electrohydrodynamic jet plotting. Manuf   and  composites. Macromol  Mater Eng, 295(4): 315–319.
               Lett, 12: 6–9. https://doi.org/10.1016/j.mfglet.2017.04.001.  https://doi.org/10.1002/mame.200900396.
           35.  Roth E A, Xu T, Das M, et al., 2004, Inkjet printing for high–  44.  Wei C, Dong J, 2013, Direct fabrication of high–
               throughput cell patterning. Biomaterials, 25(17): 3707–3715.   resolution three–dimensional polymeric scaffolds using
               https://doi.org/10.1016/j.biomaterials.2003.10.052.  electrohydrodynamic hot jet plotting.  J Micromech
           36.  Jayasinghe S N, Qureshi  A N, Eagles P  A,  2006,   Microeng,  23(2):  2501701–2501709.  https://doi.
               Electrohydrodynamic  jet  processing:  An  advanced  org/10.1088/0960-1317/23/2/025017.
               electric–field–driven  jetting  phenomenon  for  processing   45.  Wei C, Dong J, 2014, Development and modeling of melt
               living cells. Small, 2(2): 216–219.  https://doi.org/10.1002/  electrohydrodynamic–jet printing of phase–change inks for
               smll.200500291.                                     high–resolution  additive  manufacturing. J Manuf Sci Eng,
           37.  Kwok A, Arumuganathar S, Irvine S A, et al., 2008, A hybrid   136: 7. https://doi.org/10.1115/1.4028483.
               bio–jetting  approach  for directly  engineering  living  cells.   46.  Cai  Y,  Li  J,  Poh  C  K,  et al., 2013, Collagen grafted
               Biomed Mater (Bristol), 3(2): 250081–250088.  https://doi.  3D polycaprolactone  scaffolds for enhanced  cartilage
               org/10.1088/1748-6041/3/2/025008.                   regeneration. J Mater Chem B, 1(43): 5971–5976. https://doi.
           38.  Park J U, Lee J H, Paik U, et al., 2008, Nanoscale patterns   org/10.1039/c3tb20680g.
               of oligonucleotides formed  by electrohydrodynamic  jet   47.  Ahn  S  H,  Lee  H  J,  Kim  G  H,  2011,  Polycaprolactone
               printing with application  in biosensing and nanomaterials   scaffolds fabricated with an advanced electrohydrodynamic
               assembly.  Am Chem Soc,  8: 4210–4216.  https://doi.  direct–printing  method  for bone tissue regeneration.
               org/10.1021/nl801832v.                              Biomacromolecules,  12(12):  4256–4263.  https://doi.
           39.  Shigeta K, He Y, Sutanto E, et al., 2012, Functional protein   org/10.1021/bm201126j.

















                                       International Journal of Bioprinting (2019)–Volume 5, Issue 1        11
   95   96   97   98   99   100   101   102   103   104   105