Page 100 - IJB-5-1
P. 100
Gao and Zhou
30. Wang X, Xu L, Zheng G F, et al., 2012, Pulsed microarrays by electrohydrodynamic jet printing. Anal Chem,
electrohydrodynamic printing of conductive silver patterns 84(22): 10012–10018. https://doi.org/10.1021/ac302463p.
on demand. Sci China Technol Sci, 55(6): 1603–1607. https:// 40. Wang K, Stark J P W, 2010, Direct fabrication of electrically
doi.org/10.1007/s11431-012-4843-4. functional microstructures by fully voltage–controlled
31. Rahman K, Ali K, Muhammad N M, et al., 2012a, Fine electrohydrodynamic jet printing of silver nano–ink. Appl
resolution drop–on–demand electrohydrodynamic patterning Phys A, 99(4): 763–766. https://doi.org/10.1007/s00339-010-
of conductive silver tracks on glass substrate. Appl Phys A, 5701-5.
111(2): 593–600. https://doi.org/10.1007/s00339-012-7267-x. 41. Seong B, Yoo H, Nguyen V D, et al., 2014, Metal–mesh
32. Kang J, Jang Y, Kim Y, et al., 2015, An Ag–grid/graphene based transparent electrode on a 3–D curved surface by
hybrid structure for large–scale, transparent, flexible heaters. electrohydrodynamic jet printing. J Micromech Microeng,
Nanoscale, 7(15): 6567–6573. https://doi.org/10.1039/ 24(9): 970021–970025. https://doi.org/10.1088/0960-
C4NR06984F. 1317/24/9/097002.
33. Rahman K, Khan A, Muhammad N M, et al., 2012b, Fine– 42. Sullivan A C, Jayasinghe S N, 2007, Development of a direct
resolution patterning of copper nanoparticles through three–dimensional biomicrofabrication concept based on
electrohydrodynamic jet printing. J Micromech Microeng, electrospraying a custom made siloxane sol. Biomicrofluidics,
22(6): 650121–650128. https://doi.org/10.1088/0960- 1(3): 3410301–3410310. https://doi.org/10.1063/1.2766761.
1317/22/6/065012. 43. Ahmad Z, Rasekh M, Edirisinghe M, 2010,
34. Han Y, Dong J, 2017, High–resolution direct printing of Electrohydrodynamic direct writing of biomedical polymers
molten–metal using electrohydrodynamic jet plotting. Manuf and composites. Macromol Mater Eng, 295(4): 315–319.
Lett, 12: 6–9. https://doi.org/10.1016/j.mfglet.2017.04.001. https://doi.org/10.1002/mame.200900396.
35. Roth E A, Xu T, Das M, et al., 2004, Inkjet printing for high– 44. Wei C, Dong J, 2013, Direct fabrication of high–
throughput cell patterning. Biomaterials, 25(17): 3707–3715. resolution three–dimensional polymeric scaffolds using
https://doi.org/10.1016/j.biomaterials.2003.10.052. electrohydrodynamic hot jet plotting. J Micromech
36. Jayasinghe S N, Qureshi A N, Eagles P A, 2006, Microeng, 23(2): 2501701–2501709. https://doi.
Electrohydrodynamic jet processing: An advanced org/10.1088/0960-1317/23/2/025017.
electric–field–driven jetting phenomenon for processing 45. Wei C, Dong J, 2014, Development and modeling of melt
living cells. Small, 2(2): 216–219. https://doi.org/10.1002/ electrohydrodynamic–jet printing of phase–change inks for
smll.200500291. high–resolution additive manufacturing. J Manuf Sci Eng,
37. Kwok A, Arumuganathar S, Irvine S A, et al., 2008, A hybrid 136: 7. https://doi.org/10.1115/1.4028483.
bio–jetting approach for directly engineering living cells. 46. Cai Y, Li J, Poh C K, et al., 2013, Collagen grafted
Biomed Mater (Bristol), 3(2): 250081–250088. https://doi. 3D polycaprolactone scaffolds for enhanced cartilage
org/10.1088/1748-6041/3/2/025008. regeneration. J Mater Chem B, 1(43): 5971–5976. https://doi.
38. Park J U, Lee J H, Paik U, et al., 2008, Nanoscale patterns org/10.1039/c3tb20680g.
of oligonucleotides formed by electrohydrodynamic jet 47. Ahn S H, Lee H J, Kim G H, 2011, Polycaprolactone
printing with application in biosensing and nanomaterials scaffolds fabricated with an advanced electrohydrodynamic
assembly. Am Chem Soc, 8: 4210–4216. https://doi. direct–printing method for bone tissue regeneration.
org/10.1021/nl801832v. Biomacromolecules, 12(12): 4256–4263. https://doi.
39. Shigeta K, He Y, Sutanto E, et al., 2012, Functional protein org/10.1021/bm201126j.
International Journal of Bioprinting (2019)–Volume 5, Issue 1 11

