Page 40 - IJB-5-1
P. 40

Shuai C
           154.  Palaganas N, Mangadlao J, De A L, et al., 2017, 3D printing of   dimensional nanofibrous macrostructures via electrospinning.
               photocurable cellulose nanocrystal composite for fabrication   Prog Polym Sci, 39(5): 862–890.
               of complex  architectures  via  stereolithography.  Acs  Appl   168.  Hochleitner G, JãNgst T, Brown T D, et al., 2015, Additive
               Mater Interfaces, 9(39): 34314–34324.               manufacturing  of  scaffolds  with  sub–micron  filaments  via
           155.  Wan Q,  Tian  J, Liu  M,  et al.,  2015,  Surface  modification   melt electrospinning writing. Biofabrication, 7(3): 35002.
               of carbon nanotubes via combination of mussel inspired   169.  Tian L, Prabhakaran  M P, Hu J,  et al., 2016, Synergistic
               chemistry  and chain transfer free radical  polymerization.   effect of topography, surface chemistry and conductivity of
               Appl Surf Sci, 346: 335–341.                        the electrospun nanofibrous scaffold on cellular response of
           156.  Li B, Hou W, Sun J, et al., 2015, Tunable functionalization   PC12 cells. Colloids Surf B Biointerfaces, 145: 420–429.
               of graphene oxide sheets through surface–initiated cationic   170.  Wang P,  Wang  Y,  Tong L,  2013, Functionalized  polymer
               polymerization. Macromolecules, 48(4): 994–1001.    nanofibers: A versatile platform for manipulating light at the
           157.  Elomaa L, Teixeira S, Hakala R, et al., 2011, Preparation of   nanoscale. Light Sci Appl, 2(10): e102.
               poly(ε–caprolactone)–based tissue engineering scaffolds by   171.  Repanas  A,  Andriopoulou S, Glasmacher  B, 2016,  The
               stereolithography. Acta Biomater, 7(11): 3850–3856.  significance of electrospinning as a method to create fibrous
           158.  Hockaday  L A, Kang K H, Colangelo  N  W,  et al., 2012,   scaffolds  for  biomedical  engineering  and  drug  delivery
               Rapid 3D printing of anatomically accurate and mechanically   applications. J Drug Deliv Sci Technol, 31: 137–146.
               heterogeneous aortic valve hydrogel scaffolds. Biofabrication,   172.  Cipitria A, 2011, Design, fabrication and characterization of
               4(3): 35005.                                        PCL electrospun scaffolds - A review. J Mater Chem, 21(26):
           159.  Meyer  W, Engelhardt S, Novosel E,  et al., 2012, Soft   9419–9453.
               polymers for building up small and smallest blood supplying   173.  Luu Y K, Kim K, Hsiao B S, et al., 2003, Development of a
               systems by stereolithography.  J Funct Biomater, 3(2):   nanostructured DNA delivery scaffold via electrospinning of
               257–268.                                            PLGA and PLA–PEG block copolymers. J Controll Release,
           160.  Guillaume  O, Geven M  A, Sprecher C M,  et al., 2017,   89(2): 341–353.
               Surface–enrichment  with hydroxyapatite  nanoparticles  in   174.  Brown J H, Das P, Divito  M D,  et al.,  2018,  Nanofibrous
               stereolithography–fabricated  composite  polymer  scaffolds   PLGA electrospun scaffolds modified with Type I collagen
               promotes bone repair. Acta Biomater, 54: 386-398.   influence hepatocyte function and support viability in vitro.
           161.  Thavornyutikarn  B,  Tesavibul  P, Sitthiseripratip  K,  et al.,   Acta Biomater, 73: 217–227.
               2017, Porous 45S5 bioglass®–based  scaffolds using   175.  Valente T A M, Silva D M, Gomes P S, et al., 2016, Effect of
               stereolithography: Effect of partial pre–sintering on structural   sterilization methods on electrospun poly (lactic acid) (PLA)
               and  mechanical  properties  of  scaffolds.  Mater  Sci  Eng  C   fiber alignment for biomedical applications. Acs Appl Mater
               Mater Biol Appl, 75: 1281.                          Interfaces, 8(5): 3241.
           162.  Du  D,  Asaoka T,  Ushida T,  et al., 2014, Fabrication  and   176.  Shim I K, Mi R J, Kim K H,  et al., 2010, Novel three-
               perfusion culture of anatomically shaped artificial bone using   dimensional  scaffolds  of  poly  (L-lactic  acid)  microfibers
               stereolithography. Biofabrication, 6(4): 45002.     using electrospinning and mechanical expansion: Fabrication
           163.  Levy R A, Chu T M, Halloran J W, et al., 1997, CT–generated   and bone regeneration.  J Biomed Mater Res Part B  Appl
               porous hydroxyapatite orbital floor prosthesis as a prototype   Biomater, 95B(1): 150–160.
               bioimplant. Ajnr Am J Neuroradiol, 18(8): 1522–1525.  177.  Vaquette C, Ivanovski S, Hamlet S M, et al., 2013, Effect of
           164.  Sabree I, Gough J E, Derby B, 2015, Mechanical properties   culture conditions and calcium phosphate coating on ectopic
               of porous ceramic scaffolds: Influence of internal dimensions.   bone formation. Biomaterials, 34(22): 5538–5551.
               Ceram Int, 41(7): 8425–8432.                    178.  Yao Q, Cosme J G, Xu T, et al., 2016, Three dimensional
           165.  Kim J Y, Jin W L, Lee S J, et al., 2007, Development of a bone   electrospun  PCL/PLA  blend  nanofibrous  scaffolds  with
               scaffold using HA nanopowder and micro–stereolithography   significantly improved stem cells osteogenic differentiation
               technology. Microelectronic Eng, 84(5–8): 1762–1765.  and cranial bone formation. Biomaterials, 115: 115.
           166.  Melchels F  P, Feijen J, Grijpma D  W, 2010,  A review   179.  Tan R P, Chan A, Lennartsson K, et al., 2018, Integration of
               on stereolithography and its applications  in biomedical   induced pluripotent stem cell–derived endothelial cells with
               engineering. Biomaterials, 31(24): 6121–6130.       polycaprolactone/gelatin–based electrospun scaffolds for
           167.  Sun B, Long Y Z, Zhang H D, et al., 2014, Advances in three–  enhanced therapeutic angiogenesis. Stem Cell Res Ther, 9(1): 70.

                                       International Journal of Bioprinting (2019)–Volume 5, Issue 1        23
   35   36   37   38   39   40   41   42   43   44   45